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Abstract
The connectivity matrix of a graph is the matrix whose off-diagonal i-j entry is the maximum number of internally vertex
disjoint paths between the vertices i and j with only zeros on its diagonal. In this article, lower and upper estimates for the
largest eigenvalue of such matrices are investigated. Bounds in terms of the underlying graph’s average degree are provided
and it is shown that they can be utilized to refine previous bounds on the energy of connectivity matrices.
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1. Introduction

Throughout this article, graphs are nonempty, finite, undirected, and contain neither loops nor multiple edges. The terms
and concepts not introduced here explicitly are taken from the monograph of Diestel [5]. The identity matrix is denoted
by I. A vector, of appropriate size, that contains only ones is denoted by 1. For a graphG on vertex set V (G) = {1, . . . , n} its
order and size are abbreviated by n := |V (G)| and m := |E(G)|, respectively. Denote the connectivity of G by κ, its degrees
by ∆ = d1 ≥ d2 ≥ . . . ≥ dn = δ, and its average degree by d̄ := 1

n

∑
i=1 di = 2m

n .
Our main interest here is in connectivity matrices, also known as path matrices. For a graph G, this is a matrix

P (G) = [pij ] of type n× n, whose diagonal entries are zero and whose off-diagonal entry pij is the maximum number of
independent, meaning internally vertex disjoint, paths between vertices i and j in G. The number pij is also called local
connectivity of i and j and graphs satisfying pij = min{di, dj} for all vertices i and j are called maximally local connected.
Similar to a graph’s adjacency matrix, the connectivity matrix resembles how different vertices are connected. But the
connectivity matrix has very special weights and contains non-zero off-diagonal entries only if the underlying graph is
not connected. Questions about how the spectral properties of connectivity matrices are related to the underlying graph’s
structure are studied first by Patekar and Shikare [14]. Naturally, the largest eigenvalue of P (G), which we address by ρ1,
received attention. It is known that

κ(n− 1) ≤ ρ1 ≤ ∆(n− 1).

The lower bound is established by Akbari, Ghodrati, Gutman, Hosseinzadeh, and Konstantinova [1], the upper bound is
given by Narke and Malavadkar [13]. Both results can be shown by employing Perron-Frobenius arguments, as presented
by Horn and Johnson [8, Chapter 8]. Refined upper bounds on ρ1 are given by Xu and Zhou [18]. Those are in terms of
vertex transmissions or the trace of P (G)2, but so far we lack simple bounds in terms of the average degree. In comparison,
the classical relations by Collatz and Sinogowitz [3] for the largest adjacency eigenvalue λ1 are

d̄ ≤ λ1 ≤ ∆.

Encouraged by this blueprint, we ask for bounds on ρ1 that depend on d̄, instead of κ or ∆, in Section 2. As κ ≤ δ ≤ d̄ ≤ ∆,
such relations are a good complement to previous results. In Section 3, we demonstrate the potential of such eigenvalue
bounds in showing how to obtain upper bounds on the energy of connectivity matrices that improve existing ones.

2. Bounds on the largest eigenvalue

First note that the Rayleigh principle implies the simple relation

ρ1 ≥
1

n
1>P (G)1 ≥ 2m

n
= d̄.
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To improve on that, let us recall key facts about local connectivity, presented by Volkmann [17] and Mader [12].

Lemma 2.1 (see [17]). For a graph G of order n and two vertices i, j ∈ V (G), the local connectivity pij satisfies

pij ≥ di + dj − n+ [ij ∈ E(G)] + 2[ij /∈ E(G)].

Herein, we use the Iverson bracket, which evaluates to [B] := 1 if B is true and [B] := 0 if B is false.

Theorem 2.1 (see [12]). Any graphG that has at least one edge contains two adjacent vertices i, j ∈ V (G) that are connected
by min{di, dj} independent paths.

Theorem 2.2. Consider a graph G on n vertices whose connectivity matrix has the largest eigenvalue ρ1. Then

(2n− 3)d̄+ (n− 1)(2− n) ≤ ρ1,

with equality if and only if G is complete, or consists of two isolated vertices, or is a path on three vertices.

Proof. By the Rayleigh principle and Lemma 2.1, we obtain

ρ1 ≥
1

n
1>P (G)1 =

2

n

∑
1≤i<j≤n

pij

≥ 2

n

∑
1≤i<j≤n

(
di + dj − n+ [ij ∈ E(G)] + 2[ij /∈ E(G)]

)
=

2

n

(
(n− 1)

n∑
i=1

di −
n2(n− 1)

2
+m+ 2

(n(n− 1)

2
−m

))
= (2n− 2)d̄− n(n− 1) + 2(n− 1)− 2m

n
= (2n− 3)d̄+ (n− 1)(2− n),

which verifies the claimed bound. The relation is tight if and only if pij = di + dj − n+ [ij ∈ E(G)] + 2[ij /∈ E(G)] for all
vertices i 6= j in V (G) and if 1 is an eigenvector to ρ1. Then for any s ∈ V (G) row s of P 1 reads

n∑
j=1

psj =

n∑
j=1, j 6=s

(
ds + dj − n+ [sj ∈ E(G)] + 2[sj /∈ E(G)]

)
= (n− 1)ds +

n∑
j=1, j 6=s

dj − n(n− 1) + ds + 2(n− 1− ds)

= (n− 3)ds + 2m+ (2− n)(n− 1).

The same argument can be made for any other vertex t 6= s in V (G). From P 1 = ρ11, we obtain

(n− 3)ds + 2m+ (2− n)(n− 1) = ρ1 = (n− 3)dt + 2m+ (2− n)(n− 1).

For n 6= 3, this implies ds = dt. In other words, only graphs on three vertices or regular graphs can possibly attain the given
bound. It is easy to see that for n = 3, only the path on three vertices and the triangle attain our bound. Finally, let G be
a k-regular graph attaining our bound. By Theorem 2.1, there are two adjacent vertices v, w ∈ V (G) that are connected by
min{dv, dw} independent paths in G. This implies

k = min{dv, dw} = pvw = dv + dw − n+ [vw ∈ E(G)] + 2[vw /∈ E(G)] = 2k − n+ 1.

Consequently, k = n− 1. So G is complete, as claimed. Note that Mader’s result [12] is not applicable if G is edgeless. The
only such graph attaining our bound is the graph consisting of two isolated vertices.

Another bound on ρ1 can be deduced directly from a result of Dankelmann and Oellermann [4]. Whereas the authors
provide graphs that attain the given bound, we contribute an argument that the given candidates are the only attaining
graphs. Before we reinvestigate their proof, let us recall Dirac’s characterization [6] of chordal graphs, meaning graphs
that contain no cycle on four vertices as an induced subgraph.

Theorem 2.3 (see [6]). A graph G is chordal if and only if every induced subgraph of G contains a simplicial vertex, that
is a vertex whose neighborhood is complete.

10



T. Hofmann / Discrete Math. Lett. 15 (2025) 9–14 11

Corollary 2.1. Any (k − 1)-regular chordal graph is of the form cKk, for some c ∈ N, meaning a disjoint union of complete
graphs on k vertices.

Theorem 2.4 (see [4]). For a graph G of order n, there holds

κ̄(G) ≥ d̄ 2

n− 1
,

where κ̄(G) :=
(
n
2

)−1∑
1≤i<j≤n pij denotes the average connectivity ofG. The bound is attained if and only ifG is of the form

n
kKk, where n has to be a multiple of k.

Proof. Let us denote the number of i-j paths of length ` ∈ {1, 2} by p
`
pij . Note that paths counted by these coefficients are

always independent. Furthermore, ∑
1≤i<j≤n

p
1
pij = E(G) =

nd̄

2
.

Because every vertex i of G is the inner vertex of
(
di

2

)
paths of length two, there holds

∑
1≤i<j≤n

p
2
pij =

∑
1≤i<j≤n

(
di
2

)
=

∑
1≤i<j≤n

di(di − 1)

2
≥ nd̄(d̄− 1)

2
,

by the convexity of the function f(x) = x(x− 1)/2. Herein, equality holds if and only if G is regular. Consequently,

κ̄(G) =

(
n

2

)−1 ∑
1≤i<j≤n

pij ≥
2

n(n− 1)

∑
1≤i<j≤n

(p
1
pij + p

2
pij) ≥

2

n(n− 1)

(
nd̄

2
+
nd̄(d̄− 1)

2

)
=

d̄ 2

n− 1
.

This inequality is attained if and only if G is regular and if pij = p
1
pij + p

2
pij for all i and j. The latter condition can only

be satisfied if G contains no induced cycle on at least four vertices, in other words, if G is chordal. In view of Theorem 2.3
and Corollary 2.1, this concludes our proof.

Corollary 2.2. Consider a graph G on n vertices whose connectivity matrix has the largest eigenvalue ρ1. Then d̄ 2 ≤ ρ1.

The bound is attained if and only if G is of the form n
kKk, where n has to be a multiple of k.

Proof. By the Rayleigh principle and Theorem 2.1, we obtain

ρ1 ≥
1

n
1>P (G)1 =

2

n

∑
1≤i<j≤n

pij = (n− 1)κ̄(G) ≥ d̄ 2.

The case of equality follows from that of Theorem 2.4 and the fact that ρ1 = 1
n1
>P (G)1 if G is of the form n

kKk, where n is
a multiple of k.

We now turn to an upper bound on ρ1 that depends on the average degree. We rely on the following well-known facts,
which can be found in [16, Section 1.3].

Lemma 2.2. Let A = [aij ] and B = [bij ] be nonnegative irreducible matrices in Rn×n. If A ≤ B, then λ1(A) ≤ λ1(B). If
A ≤ B and if aij < bij for some i, j ∈ {1, . . . , n}, then λ1(A) < λ1(B).

Lemma 2.3. The largest eigenvalue λ1 of any nonnegative symmetric matrix A = [aij ] in Rn×n satisfies

λ1 ≤ max
1≤i≤n

n∑
j=1

aij

Theorem 2.5. Consider a graphG on n vertices whose connectivity matrix has the largest eigenvalue ρ1. Then ρ1 ≤ (n−1)d̄.

Herein, equality holds if and only if G is regular and maximally local connected.

Proof. Recall that we denote the degrees of G such that d1 ≥ . . . ≥ dn. By the fact that pij ≤ min{di, dj}, we obtain

P (G) ≤



1 2 3 n− 1 n
1 0 d2 d3 dn−1 dn
2 d2 0 d3 dn
3 d3 d3 0 dn

0 dn−1 dn
n− 1 dn−1 dn−1 0 dn

n dn dn dn dn dn 0

 =: D(G).
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The first row of D(G) is that with the largest row sum. By Lemmas 2.2 and 2.3, we conclude that

ρ1 ≤
n∑

i=2

di =

∑n
i=2 di + (n− 1)

∑n
i=2 di

n
≤

(n− 1)d1 + (n− 1)
∑n

i=2 di
n

= (n− 1)

∑n
i=1 di
n

= (n− 1)d̄. (1)

In view of Lemma 2.2, our bound can only be attained if P (G) = D(G), that is, if G is maximally local connected. The
second inequality in (1) is attained if and only if G is regular. But then P (G) = d̄(11> − I) and thus P (G)1 = (n− 1)d̄1

and our bound is attained.

3. Upper bounds on the energy

Let us recall that the energy E(A) of a matrix A is defined as the sum of the absolute values of the eigenvalues of A. By
the energy of a graph, one typically refers to the energy of its associated adjacency matrix. Other graph matrices give
rise to further variants of that concept. The connectivity or path energy is EP (G) := E(P (G)). This particular invariant is
introduced by Shikare, Malavadkar, Patekar, and Gutman [15], who also asked whether the following relation holds.

Conjecture 3.1 (see [15]). For a graph G of order n, its connectivity energy satisfies

EP (G) ≤ 2(n− 1)2,

with equality if and only if G is complete.

If true, this relation shows an interesting difference between the energy of connectivity and adjacency matrices. The
latter is not maximal for the complete graph, which led to extensive research on those graphs whose energy exceeds the
energy of complete graphs, so-called hyperenergetic graphs. But in our case, it is not known whether there exist such
candidates at all. See also Gutman [11] for an overview about that topic. Attempts to resolve Conjecture 3.1 are made by
Ilić and Bašić [9] and Hofmann [7], who verify that

EP (G) ≤
(

2n

n∑
i=1

(i− 1)d2i

)1/2
≤ n(n− 1)3/2,

We conclude this article by illustrating how to improve this bound. Our general strategy follows the approach by Koolen
and Moulten [10]. Furthermore, we build on Theorem 2.2 and make use of the following fact about local connectivities,
presented by Casablanca, Mol, and Oellermann [2] about the potential of a sequence of positive integers a1 . . . , an, that is

P (a1, a2, . . . , an) :=
∑

1≤i<j≤n

min{ai, aj}.

Lemma 3.1 (see [2]). Let a1, a2, . . . , an be a sequence of positive integers and set s :=
∑n

i=1 ai. Denoting the unique integers
a and r that satisfy 0 ≤ r < n and s = an+ r, there holds

P (a1, a2, . . . , an) ≤ P (a, . . . , a︸ ︷︷ ︸
n−r terms

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
r terms

).

Theorem 3.1. For a graph G on n vertices, the corresponding connectivity energy satisfies

EP (G) ≤ ρ1 +
(

(n− 1)
(
n(n− 1)(ρ1 + var(G))− (n− r)r − ρ21

))1/2
where var(G) := 1

n

∑n
i=1(di − d̄)2 is the degree variance of G and r is the unique integer such that 0 ≤ r < n, a ∈ Z, and∑n

i=1 d
2
i = an+ r. Equality holds if and only if G = Kn.

Proof. Let us denote the eigenvalues of P (G) by ρ1 ≥ . . . ≥ ρn and recall that ρ1 is positive. Then, by the Cauchy-Schwarz
inequality,

EP (G) = ρ1 +

n∑
i=2

ρi ≤ ρ1 +
(

(n− 1)

n∑
i=2

ρ2i

)1/2
= ρ1 +

(
(n− 1)(tr(P 2)− ρ21)

)1/2
.

It remains to be shown a suitable bound on tr(P 2). For that purpose, we use Lemma 3.1 for the setting ai := d2i , i ∈ {1, . . . , n}.
Denote s :=

∑n
i=1 ai =

∑n
i=1 d

2
i and let a and r be the unique integers such that 0 ≤ r < n and s = an+ r. Then

a =
1

n
(s− r) =

1

n
(

n∑
i=1

d2i − r).

12
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It follows that

tr(P 2) = 2
∑

1≤i<j≤n

p2ij ≤ 2
∑

1≤i<j≤n

min{di, dj}2 = 2
∑

1≤i<j≤n

min{d2i , d2j} = 2P (d21, d
2
2, . . . , d

2
n)

≤ 2P ( a, . . . , a︸ ︷︷ ︸
n−r terms

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
r terms

) = 2
(
a

(
n

2

)
+

(
r

2

))
= an(n− 1) + r(r − 1)

=
1

n

( n∑
i=1

d2i − r
)
n(n− 1) + r(r − 1) = n(n− 1)

(( 1

n

n∑
i=1

di

)2
+

1

n

n∑
i=1

(di − d̄)2
)
− (n− r)r

= n(n− 1)(d̄ 2 + var(G))− (n− r)r.

Since Corollary 2.2 provides us with d̄ 2 ≤ ρ1, this establishes the claimed bound. It is easy to see that it is attained by
G = Kn. Equality can only hold if equality holds in our bound on tr(P 2), so only if pij = min{di, dj} for all i, j ∈ {1, . . . , n},
i 6= j. This is only possible if G is connected. As we also rely on the bound from Corollary 2.2, this shows that only Kn

attains the bound.

In view of Theorem 2.2, another energy bound can be obtained by using the estimate

d̄ 2 ≤
(
ρ1 + (n− 1)(n− 2)

)2
(2n− 3)2

instead of d̄ 2 ≤ ρ1 within the previous proof. A bound that is independent of ρ1 can be made precise by analyzing the
function

f(ρ1) := ρ1 +
(

(n− 1)
(
n(n− 1)(ρ1 + var(G))− (n− r)r − ρ21

))1/2
with respect to ρ1. The resulting maxima, whose exact formulas are anything but appealing, result in improvements over
the energy bounds known so far, but exceed what is necessary to resolve Conjecture 3.1. This is demonstrated in Figure 3.1.
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Figure 3.1: Energy bounds and exact values for connected graphs on n = 10 vertices with varying edge density.

Whether Conjecture 3.1 holds remains an interesting open question.
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