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Abstract

A pair of adjacencies in the digital space Z3 for every positive integer is introduced. The adjacencies are finer than the
6-adjacency and coarser than the 26-adjacency, and the connectedness provided by them for recognition of digital Jordan
surfaces is used. The surfaces are defined to be boundary surfaces of the digital polyhedra that can be face-to-face tiled with
certain digital cubes, triangular prisms, and tetrahedra.
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1. Introduction

Digital Jordan surfaces in the 3D digital space Z3 approximate the continuous surfaces in the Euclidean space R3 and,
therefore, they should behave analogously. In particular, they are required to satisfy a digital analogue of the 3D Jordan-
Brouwer separation theorem (cf. [4]), which means that the surfaces separate Z3 into two connected components. This is
a natural requirement because digital Jordan surfaces represent boundaries of figures in 3D digital images and we want
the boundary of a figure to disconnect the interior of the figure from its exterior while both the interior and exterior are
connected. Therefore, it is one of the basic problems of digital imagery to find convenient connectedness structures on the
digital space Z3 that permit such digital Jordan surfaces.

In the classical approach to the problem (see [2,10–12,15–18], the figures in a 3D digital image consist of digital cubes
(voxels) that are connected by 1) faces (6-adjacency) or 2) faces or edges (18-adjacency) or 3) faces or edges or vertices (26-
adjacency). Disadvantageously, when using the connectedness given by any one of the three adjacencies, it may happen
that the interior of a figure is not connected or is not disconnected from the exterior of the figure. To eliminate this
disadvantage, a combination of two kinds of connectedness (adjacencies) has to be used, one for the surface and one for its
complement (cf. [3,10–12]).

The inconvenience of using a combination of two adjacencies in the classical approach is resolved by using the Khalimsky
topology proposed by Khalimsky, Kopperman, and Meyer in [7] (see also [9]). The topology provides an adjacency on Z3

that gives quite a broad variety of digital Jordan surfaces as shown by Kopperman, Meyer, and Wilson in [13] and Melin
in [14]. However, it is a disadvantage of the digital Jordan surfaces with respect to the Khalimsky topology that they can
never contain a dihedral angle less than π

2 .
In the present paper, we will introduce, for every positive integer n, two new adjacencies in Z3 having “densities”

inversely proportional to n. Both of them are finer than the 6-adjacency and coarser than the 26-adjacency. The connect-
edness given by the adjacencies will be employed to define digital Jordan surfaces as the boundary surfaces of the digital
polyhedra that can be face-to-face tiled with certain digital cubes, triangular prisms, and tetrahedra. The Jordan surfaces
obtained may contain acute dihedral angles π

4 being so more various than the digital Jordan surfaces with respect to the
Khalimsky topology. They also generalize the digital Jordan surfaces proposed in [20], which are defined by using a special
graph connectedness introduced in [19]. Namely, in [20], the digital Jordan surfaces are defined to be boundary surfaces
of the digital polyhedra that can be face-to-face tiled with digital tetrahedra under a restrictive condition imposed on the
tiling (at most one of a pair of faces of any of the tetrahedra may be a subset of the surface). The advantage of the digital
Jordan surfaces introduced in this note is that they are not restricted by any such a condition. Digital surfaces consisting
of faces of certain digital polyhedra are discussed also [1] but our approach is quite different from the one used there.
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The classical connectedness given by a combination of (a pair of) 6-, 18-, and 26-adjacencies is the most frequently used
connectedness in graphical software. The mentioned drawback of the connectedness is overcome by the modern efficient
hardware. Indeed, nowadays the voxels may be so tiny that the advantage of the digital Jordan surfaces introduced in
this note over the other ones is marginal from the viewpoint of applications in digital imagery. Notwithstanding this, the
theoretical results presented here may be considered to be a contribution to the development of discrete geometry.

2. Preliminaries

We will use some basic graph-theoretic concepts only and we refer to [6] for them. As usual, by an adjacency in a set V

we understand a subset E ⊆ {{x, y}; x, y ∈ V, x ̸= y} (so that an adjacency in a set V is nothing but an irreflexive and
symmetric binary relation on V ). Elements x, y ∈ V are said to be E-adjacent if {x, y} ∈ E – we then also say that x is an
E-neighbor of y (and y is an E-neighbor of x). By a graph we mean an undirected simple graph without loops, hence, a pair
G = (V,E) where V is a set whose elements are called the vertices of G, and E is an adjacency in V whose elements are
called the edges of G. A path in a graph G = (V,E) is a finite sequence (xi| i ≤ n) = (x0, x1, ..., xn) (n a non-negative integer)
of pairwise different vertices such that {xi, xi+1} ∈ E for all i = 0, 1, ..., n− 1. A subset A ⊆ V is said to be E-connected (in
G) if, for every pair of vertices x, y ∈ A, there is a path (xi| i ≤ n) in G such that x0 = x, xn = y, and xi ∈ A for every i ≤ n.
A maximal (with respect to set inclusion) E-connected set is called an E-component.

Given graphs G1 = (V1, E1) and G2 = (V2, E2), G1 is called a subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2. If, moreover,
V1 = V2, then G1 is said to be a factor of G2. A subgraph (V1, E1) of a graph (V2, E2) is called an induced subgraph of
(V2, E2) if E1 = E2 ∩ {{x, y}; x, y ∈ V1}. We speak briefly about the induced subgraph V1 of (V2, E2) in this case. The
graphs G1 and G2 are said to be isomorphic if there is an isomorphism between them, i.e., a bijection f : V1 → V2 such
that {x, y} ∈ E1 if and only if {f(x), f(y)} ∈ E2. Given a set V and an adjacency E in V , subsets A,B ⊆ V are said to be
E-isomorphic if the induced subgraphs A, B of (V,E) are isomorphic.

We will use the concept of a face-to-face tiling (i.e., tessellation) with digital polyhedra in Z3. Recall [5] that such a tiling
in R3 means that any pair of different polyhedra in this tiling is disjoint or meets in one vertex, one full edge or one full
face. We will naturally transfer the concept of a face-to-face tiling from R3 to Z3. It is well known that a cube in R3 may
be tessellated with six tetrahedra inscribed to the cube (i.e., having the property that each of their vertices is a vertex of
the cube) that are congruent to each other, that is, identical up to translation, rotation, or reflection. Such a tessellation
of digital cubes will be considered in Z3.

In this note, instead of voxels used in 3D imagery for partitioning the real space R3 and creating digital images, we use
the points in Z3, which may be considered to be the center points of the voxels with the edge length 1.

We will transfer some geometric concepts from subsets of the Euclidean space R3 to subsets of Z3. More precisely,
we will use the concepts of a digital polyhedron, digital cube, digital prism, digital tetrahedron, digital face, etc. to call
the subsets of Z3 that are obtained by the intersections of the corresponding subsets of R3 (hence, a polyhedron which is
understood to be simple, i.e., without any type of holes, cube, prism, tetrahedron, face, etc.) with Z3. Thus, we will utilize
a digitization analogous to the 3D Gauss digitization defined in [8], which uses voxels to digitize subsets of R3 while we
employ the center points of the voxels only. Nevertheless, in the figures presented, digital polyhedra will be demonstrated
with their edges represented by line segments rather than digital line segments. If it is clear that a subset of Z3 and not
a continuous subset of R3 is considered, the adjective “digital” will sometimes be omitted.

In accordance with [20], by an n-fundamental cube (n a positive integer) we understand every digital cube
{(x, y, z) ∈ Z3; 2kn ≤ x ≤ 2kn + 2n, 2ln ≤ y ≤ 2ln + 2n, 2mn ≤ z ≤ 2mn + 2n}, k, l,m ∈ Z. Given an n-fundamental
cube C, by a diagonal rectangle of C we mean any digital rectangle that is the intersection of C with a plane perpendicular
to a face of C and containing one of the two (digital) diagonals of the face. Thus, two parallel sides of a diagonal rectangle
of C are diagonals of parallel faces of C and the other two parallel sides are edges of C. Clearly, a diagonal rectangle of an
n-fundamental cube separates the cube into two digital right triangular prisms (intersecting in the rectangle, which is a
common face of them).

We denote by A6, A18, and A26 the well known 6-, 18-, and 26-adjacencies in Z3. Recall that the adjacencies are defined
as follows:

A6 =

{
{(x1, x2, x3), (y1, y2, y3)}; (x1, x2, x3), (y1, y2, y3) ∈ Z3,

3∑
i=1

|xi − yi| = 1

}
,

A18 =

{
{(x1, x2, x3), (y1, y2, y3)}; (x1, x2, x3), (y1, y2, y3) ∈ Z3,

3∑
i=1

|xi − yi| ≤ 2, max{|xi − yi|; i = 1, 2, 3} = 1

}
,

A26 = {{(x1, x2, x3), (y1, y2, y3)}; (x1, x2, x3), (y1, y2, y3) ∈ Z3, max{|xi − yi|; i = 1, 2, 3} = 1}.
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Clearly, we have A6 ⊆ A18 ⊆ A26. Every adjacency A in Z3 such that A6 ⊆ A ⊆ A26 will be called a digital adjacency. For
every positive integer n, we define two new digital adjacencies Bn and Cn as follows:

Bn = A6 ∪ {{p1, p2}; pj = (2kn+ ij , 2ln+ ij ,m) for j ∈ {1, 2} or
pj = (2kn+ ij , 2ln− ij ,m) for j ∈ {1, 2} or
pj = (2kn+ ij , l, 2mn+ ij) for j ∈ {1, 2} or
pj = (2kn+ ij , l, 2mn− ij) for j ∈ {1, 2} or
pj = (k, 2ln+ ij , 2mn+ ij) for j ∈ {1, 2} or
pj = (k, 2ln+ ij , 2mn− ij) for j ∈ {1, 2}

where k, l,m, i1, i2 ∈ Z, |i1 − i2| = 1}.
Cn = Bn ∪ {{p1, p2}; pj = (2kn+ ij , 2ln+ ij , 2mn+ ij) for j ∈ {1, 2} or

pj = (2kn+ ij , 2ln+ ij , 2mn− ij) for j ∈ {1, 2} or
pj = (2kn− ij , 2ln+ ij , 2mn+ ij) for j ∈ {1, 2} or
pj = (2kn− ij , 2ln+ ij , 2mn− ij) for j ∈ {1, 2} or

where k, l,m, i1, i2 ∈ Z, |i1 − i2| = 1}.
Observe that the graph (Z3, Bn) is a factor of (Z3, A18) but (Z3, Cn) is not. It may easily be seen that the graph (Z3, Bn)

is obtained from (Z3, A6) by adding the edges {p, q} ∈ A18 such that both points p and q lie in a diagonal rectangle of an
n-fundamental cube. And the graph (Z3, Cn) is obtained from (Z3, Bn) by adding the edges {p, q} ∈ A26 such that both
points p and q lie in a body diagonal of an n-fundamental cube. For example, for every positive integer n, Bn-neighbors
of (0, 0, 0) are just the 18-adjacent points to (0, 0, 0), Cn-neighbors of (0, 0, 0) are just the 26-adjacent points to (0, 0, 0), and
both Bn-neighbors and Cn-neighbors of (1, 0, 0) are just the 6-adjacent points to (1, 0, 0) and the points (1, j, k) ∈ Z3 where
|j| = |k| = 1. Similarly, B1-neighbors of (2, 0, 0) are just the 18-adjacent points to (2, 0, 0), C1-neighbors of (2, 0, 0) are just
the 26-adjacent points to (2, 0, 0), and both B2-neighbors and C2-neighbors of (2, 0, 0) are just the 6-adjacent points to (2, 0, 0)

and the points (2, j, k) ∈ Z3 where |j| = |k| = 1. The connectedness with respect to the Khalimsky topology coincides with
the connectedness given by a digital adjacency, the so-called Khalimsky adjacency. The Khalimsky adjacency is nothing
but the C1-adjacency (cf. [20]). Since the digital Jordan surfaces with respect to the Khalimsky topology (adjacency) are
discussed in [13], n will denote an integer with n > 1 in the sequel.

3. Digital Jordan surfaces based on A6-, Bn-, and Cn-adjacencies

The following statement is obvious:

Proposition 3.1. Every n-fundamental cube C is A6-connected and so is every face of C and every set obtained from C by
removing some of its faces.

Definition 3.1. Given an n-fundamental cube C, each of the two digital right triangular prisms such that one of its lateral
faces is a diagonal rectangle of C and the other two are faces of C is called an n-fundamental prism. The face of an
n-fundamental prism that is a diagonal rectangle of C is called the main face of the prism.

Thus, every n-fundamental cube may be tessellated with a pair of n-fundamental prisms in six different ways – one of
them is shown in Figure 3.1. Consequently, every n-fundamental cube includes 12 n-fundamental prisms, which can be
given as sets of points defined by formulas. For example, the two n-fundamental prisms shown in Figure 3.1 can be given
(for k, l,m ∈ Z) as follows:

(1) {(x, y, z) ∈ Z3; 2kn ≤ x ≤ 2kn+ 2n, 2ln ≤ y ≤ 2kn+ 2ln+ 2n− x, 2mn ≤ z ≤ 2mn+ 2n},

(2) {(x, y, z) ∈ Z3; 2kn ≤ x ≤ 2kn+ 2n, 2kn+ 2ln+ 2n− x ≤ y ≤ 2ln+ 2n, 2mn ≤ z ≤ 2mn+ 2n}.

It is left to the reader to give the other ten n-fundamental prisms by formulas.

Proposition 3.2. Every n-fundamental prism P is Bn-connected and so is every face of P and every set obtained from P by
removing some of its faces.

Proof. Let P be an n-fundamental prism. It may easily be seen that P is A6-connected and so is every square face of P ,
every triangular face of P , and every set obtained from P by removing some of its faces. Since A6 ⊆ Bn, the same is true
when considering the Bn-connectedness instead of the A6-connectedness. Since the graph (Z3, Bn) is obtained from (Z3, A6)

by adding the edges {p, q} ∈ A18 such that both points p and q are contained in a diagonal rectangle of an n-fundamental
cube, it follows that the main face of P (which is a diagonal rectangle of an n-fundamental cube C) is Bn-isomorphic to
each of the two square faces of P (which are faces of C). Hence, the main face of P is Bn-connected.
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Figure 3.1: An n-fundamental cube ABCDHEFG, its tessellation with two n-fundamental prisms, and a tessellation
of the n-fundamental prism ABDHEF with three n-fundamental tetrahedra where A = (2kn, 2ln, 2mn), B = (2kn
+2n, 2ln, 2mn), C = (2kn+2n, 2ln+2n, 2mn), D = (2kn, 2ln+2n, 2mn), E = (2kn, 2ln, 2mn+2n), F = (2kn+2n, 2ln, 2mn+2n),
G = (2kn+ 2n, 2ln+ 2n, 2mn+ 2n), H = (2kn, 2ln+ 2n, 2mn+ 2n), k, l,m ∈ Z.

Definition 3.2. By an n-fundamental tetrahedron we understand any of the three digital tetrahedra obtained by dividing
an n-fundamental prism by the planes ADF and DEF where A,D,E, F are vertices of the prism such that the line segment
DF is a diagonal of the main face, the line segment AF is a diagonal of a square face, and the line segment DE is a diagonal
of the other square face of the prism.

Clearly, every n-fundamental prism may be tessellated with three n-fundamental tetrahedra in two different ways (one
of them is demonstrated in Figure 3.1 by dotted line segments). Hence, every n-fundamental cube may be tessellated with
six n-fundamental tetrahedra in twelve different ways. It may easily be seen that, for every n-fundamental cube, there
are 24 n-fundamental tetrahedra included in the cube. Evidently, all n-fundamental tetrahedra are congruent to each
other. Of course, the n-fundamental tetrahedra can be given as sets of points defined by formulas. For example, the three
n-fundamental tetrahedra shown in Figure 3.1 can be given (for k, l,m ∈ Z) as follows:

(1) {(x, y, z) ∈ Z2; 2kn ≤ x ≤ 2kn+ 2n, 2ln ≤ y ≤ 2kn+ 2ln+ 2n− x, 2mn ≤ z ≤ x+ 2mn− 2kn},

(2) {(x, y, z) ∈ Z2; 2kn ≤ x ≤ 2kn+ 2n, 2ln ≤ y ≤ 2kn+ 2ln+ 2n− x, 2ln+ 2mn+ 2n− y ≤ z ≤ 2kn+ 2n},

(3) {(x, y, z) ∈ Z2; 2kn ≤ x ≤ 2kn+ 2n, 2ln ≤ y ≤ 2kn+ 2ln+ 2n− x, x+ 2mn− 2kn ≤ z ≤ 2ln+ 2mn+ 2n− y}.

It is left to the reader to give the other 21 n-fundamental tetrahedra by formulas.

Proposition 3.3. Every n-fundamental tetrahedron T is Cn-connected and so is every face of T and every set obtained from
T by removing some of its faces.

Proof. Let T be an n-fundamental tetrahedron. It may easily be seen that T is A6-connected and so is every isosceles
(right) triangular face of T and every set obtained from T by removing some of its faces. As A6 ⊆ Cn, the same is true when
considering the Cn-connectedness instead of the A6-connectedness. Since the graph (Z3, Cn) is obtained from (Z3, Bn) by
adding the edges {p, q} ∈ A26 such that both points p and q are contained in a body diagonal of an n-fundamental cube,
each of the two non-isosceles (right) triangular faces of T is Cn-isomorphic to each of the two isosceles triangular faces of
T . Hence, each of the two faces is Cn-connected.

Definition 3.3. Let A be a digital adjacency. An A-connected subset S ⊆ Z3 is called an A-Jordan surface if the subgraph
Z3 − S of (Z3, A) has exactly two A-components V1 and V2, one finite and the other infinite, and the sets V1 ∪ S and V2 ∪ S

are A-connected.

Theorem 3.1 (Digital Jordan Surface Theorem I). Let S ⊆ Z3 be a polyhedral surface and V be the polyhedron that is
bounded by S. If V can be face-to-face tiled with a set of n-fundamental cubes, prisms or tetrahedra, then S is an A6-, Bn-
or Cn-Jordan surface, respectively.

Proof. Let S satisfy the conditions of the statement and let V can be face-to-face tiled with a set P of n-fundamental
cubes. Then S is the union of some (finitely many) faces of certain n-fundamental cubes belonging to P. The faces are
A6-connected by Proposition 3.1 and can be ordered into a (finite) sequence such that each of its terms meets the union of
its predecessors. Therefore, S is A6-connected.
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Figure 3.2: A nonahedron ABCDEFGHIJ in Z3 tiled with twenty n-fundamental polyhedra where A = (2kn, 2ln, 2mn),
B = (2kn + 4n, 2ln, 2mn), C = (2kn + 4n, 2ln + 6n, 2mn), D = (2kn, 2ln + 6n, 2mn), E = (2kn, 2ln, 2mn + 2n), F = (2kn
+4n, 2ln, 2mn+ 2n), G = (2kn+ 4n, 2ln+ 6n, 2mn+ 2n), H = (2kn, 2ln+ 6n, 2mn+ 2n), I = (2kn+ 2n, 2ln+ 2n, 2mn+ 4n),
J = (2kn+ 2n, 2ln+ 4n, 2mn+ 4n),k, l,m ∈ Z.

Put V1 = V − S and V2 = Z3 − V . Clearly, the elements of P can also be ordered into a (finite) sequence such that
each of its terms meets the union of its predecessors. Since V is the union of all elements of P, which are n-fundamental
cubes, V = V1 ∪S is Cn-connected because every n-fundamental cube is A6-connected by Proposition 3.1. Similarly, the set
W = (Z3−V )∪S = V2∪S is the union of an (infinite) sequence of n-fundamental cubes such that each term of the sequence
meets the union of its predecessors. Hence, W is A6-connected, too. Analogously, the sets V1 = V − S and V2 = Z3 − V are
the unions of (finite and infinite, respectively) sequences of subsets of Z3 obtained from n-fundamental cubes by removing
some of their faces. These subsets are A6-connected by Proposition 3.1. In the sequences, each term meets the union of its
predecessors, hence V1 and V2 are Cn-connected.

It follows from the definition of the adjacency A6 that Z3 − S is not A6-connected, i.e., that {p, q} /∈ A6 whenever p ∈ V1

and q ∈ V2. Thus, V1 and V2 are A6-components of Z3 − S, V1 finite and V2 infinite. We have proved that S is an A6-Jordan
surface if V can be face-to-face tiled with a set of n-fundamental cubes. For the other two cases, the proofs are analogical:
we just replace n-fundamental cubes with n-fundamental prisms (n-fundametal tetrahedra), A6-connectedness with Bn-
connectedness (Cn-connectedness), and apply Proposition 3.2 (Proposition 3.3) instead of Proposition 3.1.

The n-fundamental cubes, n-fundamental prisms, and n-fundamental tetrahedra will be called the n-fundamental
polyhedra.

Corollary 3.1 (Digital Jordan Surface Theorem II). Let S ⊆ Z3 be a polyhedral surface and V be the polyhedron that is
bounded by S. If V can be face-to-face tiled with a set of n-fundamental polyhedra, then S is a Cn-Jordan surface.

Proof. Let S satisfy the conditions of the statement and let V can be face-to-face tiled with a set P of n-fundamental
polyhedra. Since A6 ⊆ Cn and Bn ⊆ Cn, it follows from Theorem 3.1 that the sets V − S and Z3 − V are Cn-connected and
so are the sets V and (Z3 − V ) ∪ S. It immediately follows from the definition of Cn that {p, q} /∈ Cn whenever p ∈ (V − S)

and q ∈ (Z3 − V ). Therefore, V − S and Z3 − V are Cn-components of Z3 − S.

Example 3.1. In Figure 3.2, a digital surface in Z3 is displayed that is a boundary of a digital nonahedron which may be
face-to-face tiled with twenty n-fundamental polyhedra (two n-fundamental cubes, ten n-fundamental prisms, and eight
n-fundamental tetrahedra) such that the conditions of Corollary 3.1 are satisfied. Thus, the surface is a Cn-Jordan surface.

Example 3.2. In Figure 3.3, a digital surface in Z3 is displayed that is a boundary of a digital heptahedron which may
be face-to-face tiled with eight n-fundamental polyhedra (four n-fundamental prisms and four n-fundamental tetrahedra)
such that the conditions of Corollary 3.1 are satisfied. Thus, also this surface is a Cn-Jordan surface.
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Figure 3.3: A heptahedron ABCDEFGH in Z3 tiled with eight n-fundamental polyhedra where A = (2kn+2n, 2ln, 2mn),
B = (2kn, 2ln+ 2n, 2mn), C = (2kn − 2n, 2ln, 2mn), D = (2kn, 2ln− 2n, 2mn), E = (2kn + 2n, 2ln, 2mn + 2n), F = (2kn, 2ln
+2n, 2mn+ 4n), G = (2kn− 2n, 2ln, 2mn+ 2n), H = (2kn, 2ln− 2n, 2mn+ 4n), k, l,m ∈ Z.

4. Conclusion

We have introduced, for every positive integer n, a pair of adjacencies Bn, Cn, Bn ⊆ Cn, in the digital space Z3, which are
then used to recognize digital Jordan surfaces. The surfaces are defined to be boundary surfaces of the digital polyhedra
that can be face-to-face tiled with (digital) cubes, triangular prisms, and tetrahedra. The adjacency Cn constitures a rich
variety of digital Jordan surfaces and its advantage over the classical adjacencies A6, A12, and A26 is that it need not be
combined with any other adjacency to provide a convenient connectedness in Z3. The surfaces may contain acute dihedral
angles π

4 , which is an advantage over the Jordan surfaces with respect to the Khalimsky topology. The variety of digital
Jordan surfaces constituted by Cn is also wider than the one obtained in [20] by using the graph connectedness introduced
in [19]. Namely, in [20], a digital Jordan surface is defined to be the boundary of a digital polyhedron that can be face-
to-face tiled with digital tetrahedra under the restriction that certain faces of the tetrahedra cannot be included in the
boundary.
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