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Abstract

Let G be a simple graph with n vertices and e(G) edges. Brouwer’s conjecture states that the sum of the k largest Laplacian
eigenvalues of G is at most e(G) + k2+k

2
for k = 1, 2, . . . , n. Torres and Trevisan [Linear Algebra Appl. 685 (2024) 66–76]

showed that if Brouwer’s conjecture holds for two simple graphs G1 and G2, then it also holds for the Cartesian product of
G1 and G2. Inspired by this result, we say that an operation on G1 and G2 satisfies the preservation property of Brouwer’s
conjecture when the following statement is true: if Brouwer’s conjecture holds for G1 and G2, then Brouwer’s conjecture
also holds for the graph obtained by applying the operation under consideration on G1 and G2. In this paper, we study
the preservation property of Brouwer’s conjecture under some edge addition operations, and hence we extend the results of
Wang, Huang, and Liu [Math. Comput. Model. 56 (2012) 60–68].
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1. Introduction

Let G be a simple graph with the vertex set V (G) and edge set E(G). The number of edges of G is denoted by e(G). The
Laplacian matrix of G, denoted by L(G), is given by L(G) = D(G) − A(G), where D(G) is the diagonal matrix of vertex
degrees and A(G) is the adjacency matrix. Clearly, L(G) is symmetric and positive semidefinite, and its eigenvalues can
be ordered as

µ1(G) ≥ µ2(G) ≥ · · ·µn−1(G) ≥ µn(G) = 0.

The set of Laplacian eigenvalues is called the Laplacian spectrum of G.
The sum of the k largest Laplacian eigenvalues of a graph G is defined as

Sk(G) =

k∑
i=1

µi(G),

where k = 1, 2, . . . , n. Motivated by the Grone-Merris-Bai Theorem [1,17], Brouwer [3] proposed the following conjecture:

Conjecture 1.1. (Brouwer’s conjecture) For any graph G with n vertices and for any k ∈ {1, 2, · · · , n},

Sk(G) ≤ e(G) +
k2 + k

2
.

This conjecture is directly related to the distribution of Laplacian eigenvalues of graphs, which is a fundamental prob-
lem in spectral graph theory. Until now, Conjecture 1.1 has been verified for all graphs with at most 11 vertices [7], all
graphs when k = 2, n−2, n−3 [5,19], trees [19], threshold graphs [19], unicyclic graphs [8,29], bicyclic graphs [8], tricyclic
graphs when k ̸= 3 [21,29], regular graphs [2,24], split graphs [2,4,24], cographs [2,24], planar graphs when k ≥ 11, and
bipartite graphs when k ≥

√
32n [7]. In [5], Chen showed that if Brouwer’s conjecture is true for all graphs when k = p

(1 ≤ p ≤ (n− 1)/2), then it is also true for all graphs when k = n− p− 1. This means that it suffices to prove Conjecture 1.1
for all graphs when 1 ≤ k ≤ (n− 1)/2. Moreover, Wang et al. [29] showed that Brouwer’s conjecture holds for all graphs if
and only if Brouwer’s conjecture holds for all connected graphs. Hence, it is sufficient to consider only connected graphs.
Recently, Li and Guo [22] proposed the full Brouwer’s conjecture and proved the conjecture holds for k = 2, which also
confirms the conjecture of Guan et al. [18]. There are also some other classes of graphs for which various parameters meet
certain conditions; for instance, we refer the reader to [6,12–16,25,27].
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On the other hand, the Laplacian energy of a graph G with n vertices is defined as

LE(G) =

n∑
i=1

∣∣∣∣µi(G)− 2e(G)

n

∣∣∣∣ ,
which is an important parameter in the molecular orbital theory of conjugated molecules [26]. Since

LE(G) = max
1≤k≤n

{
2Sk(G)− 4ke(G)

n

}
,

it follows that every upper bound on Sk(G) yields a corresponding upper bound on LE(G). In particular, Fritscher et
al. [10,11] studied the extremal value of the Laplacian energy of trees based on the upper bound of the sum of the k largest
Laplacian eigenvalues. Therefore, the solution to the Brouwer’s conjecture directly promotes the study of the Laplacian
energy of a graph.

Figure 1.1: The graphs E
(1)
1 , E(t)

2 (t = 1, 2), E(j)
3 (j = 1, 2, . . . , 5), and E

(l)
4 (l = 1, 2, . . . , 11).

Let G1 and G2 be two simple graphs. Let G1 ⋄G2 denote the graph obtained from G1 and G2 by connecting a vertex of
G1 with p ≥ 1 vertices of G2. The graphs E

(1)
1 , E(t)

2 (t = 1, 2), E(j)
3 (j = 1, 2, . . . , 5), and E

(l)
4 (l = 1, 2, . . . , 11), are shown in

Figure 1.1. Let G1E
(1)
1 G2, G1E

(t)
2 G2, G1E

(j)
3 G2, and G1E

(l)
4 G2, respectively, denote the graph obtained from G1 and G2 by

inserting a graph E
(1)
1 , E(t)

2 , E(j)
3 , or E

(l)
4 between V (G1) and V (G2) for t = 1, 2, j = 1, 2, . . . , 5 and l = 1, 2, . . . , 11. Note that

the number of newly added vertices in G1E
(1)
1 G2, G1E

(t)
2 G2, G1E

(j)
3 G2, or G1E

(l)
4 G2 is at most 3 for t = 1, 2, j = 1, 2, . . . , 5

and l = 1, 2, . . . , 11; see Figure 1.2.

Figure 1.2: The graphs G1 ⋄G2 and G1E
(4)
3 G2.
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In 2024, Torres and Trevisan [28] showed that if Brouwer’s conjecture holds for G1 and G2, then it also holds for
the Cartesian product of G1 and G2. In this paper, we show that if Brouwer’s conjecture holds for G1 and G2, then this
conjecture is also true for G1⋄G2, G1E

(1)
1 G2, G1E

(t)
2 G2, G1E

(j)
3 G2, and G1E

(l)
4 G2 for t = 1, 2, j = 1, 2, . . . , 5 and l = 1, 2, . . . , 11.

2. Preliminaries

Let G1 and G2 be two disjoint graphs. Let G1∪G2 denote the disjoint union of G1 and G2. If u ∈ V (G1) and v ∈ V (G2), then
the coalescence G1 ◦G2 of G1 and G2 is the graph obtained by identifying the vertices u and v. The coalescence of three or
more disjoint graphs is denoted by G1 ◦G2 ◦ · · · ◦Gs (s ≥ 3). If graphs G1, . . . , Gs are isomorphic, then G1 ◦G2 ◦ · · · ◦Gs is
abbreviated as s ◦G1. In particular, G1 ∗G2 ∗ · · · ∗Gs (s ≥ 3) denotes the common vertex coalescing. The complete graph
with n vertices is denoted by Kn. The four examples of the coalescence of graphs are shown in Figure 2.1.

Figure 2.1: Four possibilities of the graph 4 ◦K4.

Lemma 2.1 (see [9]). Let M and N be two real symmetric matrices of order n. Then for 1 ≤ k ≤ n, the following inequality
holds:

k∑
i=1

λi(M +N) ≤
k∑

i=1

λi(M) +

k∑
i=1

λi(N).

Lemma 2.2 (see [20]). Let G be a graph with n vertices. Then µ1(G) ≤ n.

Lemma 2.3 (see [23,30]). Let Tn and Un be a tree and a unicyclic graph on n vertices, respectively. Also, consider the graphs
T 1
n , T

2
n , . . . , T

5
n , U

1
n, U

2
n, U

3
n, and U4

n, shown in Figure 2.2.

(i). If Tn /∈ {T 1
n , T

2
n}, then µ1(Tn) < n− 1.

(ii). If Tn /∈ {T 1
n , T

2
n , T

3
n , T

4
n , T

5
n}, then µ1(Tn) < n− 2.

(iii). If Un /∈ {U1
n, U

2
n, U

3
n, U

4
n}, then µ1(Un) < n− 1.

By using Lemmas 2.2 and 2.3, and simple calculation, we obtain the next result.

Lemma 2.4. Let G be a connected graph with n vertices and e(G) edges.

(i). If G /∈ {T 1
n , T

2
n}, then µ1(G) ≤ e(G).

(ii). If G /∈ {T 1
n , T

2
n , U

1
n}, then µ1(G) ≤ e(G)− 0.7.

(iii). If G /∈ {T 1
n , T

2
n , T

3
n , T

4
n , T

5
n , U

1
n, U

2
n, U

3
n, U

4
n}, then µ1(G) ≤ e(G)− 1.

3. Main results

Theorem 3.1. Let p be a positive integer. Let G1 and G2 be two connected graphs with n1 and n2 vertices, respectively. If
Gi /∈ {T 1

ni
, T 2

ni
} is any of the graphs shown in Figure 2.2, e(Gi) ≥ p, and

Ski
(Gi) ≤ e(Gi) +

k2i + ki
2

for ki = 1, 2, . . . , ni and i = 1, 2, then for 1 ≤ k ≤ n1 + n2, the following inequality holds:

Sk(G1 ⋄G2) ≤ e(G1 ⋄G2) +
k2 + k

2
.
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T1
n T2

n T3
n T4

n
T5
n

U1
n U2

n U3
n U4

n

Figure 2.2: The graphs T 1
n , T

2
n , . . . , T

5
n , U

1
n, U

2
n, U

3
n, and U4

n.

Proof. Assume that ki of the k largest Laplacian eigenvalues of G1 ∪G2 come from the Laplacian spectrum of Gi, where
i = 1, 2 and k1 + k2 = k. If k1k2 = 0, then we suppose that k2 = 0, without loss of generality. Then k1 = k and by Lemma
2.1, we have

Sk(G1 ⋄G2) ≤ Sk(G1 ∪G2) + Sk(K1,p)

= Sk(G1) + p+ 1 + (k − 1)

≤ e(G1) +
k2 + k

2
+ p+ p

= e(G1) + e(G2) + p+
k2 + k

2
+ p− e(G2)

≤ e(G1 ⋄G2) +
k2 + k

2
.

If k1k2 ≥ k1 + k2, then by Lemma 2.1, we have

Sk(G1 ⋄G2) ≤ Sk(G1 ∪G2) + Sk(K1,p)

≤ e(G1) +
k21 + k1

2
+ e(G2) +

k22 + k2
2

+ p+ k

= e(G1) + e(G2) + p+
k21 + k22 + k1 + k2

2
+ k1 + k2

≤ e(G1 ⋄G2) +
k21 + k22 + k1 + k2

2
+ k1k2

= e(G1 ⋄G2) +
k2 + k

2
.

If k1k2 < k1 + k2, without loss of generality, suppose that k1 = 1 and k2 = k − 1. By Lemmas 2.1 and 2.4, we have

Sk(G1 ⋄G2) ≤ Sk(G1 ∪G2) + Sk(K1,p)

≤ µ1(G1) + e(G2) +
(k − 1)2 + k − 1

2
+ p+ k

= e(G1) + e(G2) + p+
(k − 1)2 + 3k − 1

2
+ µ1(G1)− e(G1)

≤ e(G1 ⋄G2) +
k2 + k

2
.

This completes the proof.
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Corollary 3.1. If ni ≥ 4 for i = 1, 2, . . . , q, with q ≥ 2, then Brouwer’s conjecture holds for Kn1 ◦Kn2 ◦ · · · ◦Knq .

Proof. Without loss of generality, we assume that n2 ≥ n1 ≥ 4. Clearly, Brouwer’s conjecture holds for Kn1
and Kn2

. Note
that Kn1

◦Kn2
can be regarded as Kn1

⋄Kn2−1 with p = n2 − 1 ≤ e(Kn2
). By Theorem 3.1, Brouwer’s conjecture holds for

Kn1
⋄Kn2−1. Applying mathematical induction on q, we have the proof of the corollary.

Chen [5] showed that Conjecture 1.1 is true for all graphs of order n with k = n− 3. Since the number of newly added
vertices in G1E

(1)
1 G2, G1E

(t)
2 G2, G1E

(j)
3 G2, or G1E

(l)
4 G2 is at most 3 for t = 1, 2, j = 1, 2, . . . , 5, and l = 1, 2, . . . , 11, the

condition 1 ≤ k ≤ n1 + n2 is sufficient in the following discussion.

Theorem 3.2. Let G1 and G2 be two connected graphs with n1 and n2 vertices, respectively. Also, let

Ski
(Gi) ≤ e(Gi) +

k2i + ki
2

for ki = 1, 2, . . . , ni and i = 1, 2. Consider the graphs T 1
n , T

2
n , . . . , T

5
n , U

1
n, U

2
n, U

3
n, and U4

n as shown in Figure 2.2.

(i). If e(Gi) ≥ 2, i = 1, 2, then for 1 ≤ k ≤ n1 + n2, s = 1, 2, t = 1, 2 and s ≥ t,

Sk(G1E
(t)
s G2) ≤ e(G1E

(t)
s G2) +

k2 + k

2
.

(ii). If e(Gi) ≥ 3, Gi /∈ {T 1
ni
, T 2

ni
} for i = 1, 2, then for 1 ≤ k ≤ n1 + n2 and j = 1, 2, . . . , 5,

Sk(G1E
(j)
3 G2) ≤ e(G1E

(j)
3 G2) +

k2 + k

2
.

(iii). If e(Gi) ≥ 4, Gi /∈ {T 1
ni
, T 2

ni
} for i = 1, 2, then for 1 ≤ k ≤ n1 + n2 and l = 1, 2, 3, 7, 8,

Sk(G1E
(l)
4 G2) ≤ e(G1E

(l)
4 G2) +

k2 + k

2
.

If e(Gi) ≥ 4, Gi /∈ {T 1
ni
, T 2

ni
, U1

ni
} for i = 1, 2, then for 1 ≤ k ≤ n1 + n2 and l = 4, 5, 6,

Sk(G1E
(l)
4 G2) ≤ e(G1E

(l)
4 G2) +

k2 + k

2
.

If e(Gi) ≥ 4, Gi /∈ {T 1
ni
, . . . , T 5

ni
, U1

ni
, . . . U4

ni
} for i = 1, 2, then for 1 ≤ k ≤ n1 + n2 and l = 9, 10, 11,

Sk(G1E
(l)
4 G2) ≤ e(G1E

(l)
4 G2) +

k2 + k

2
.

Proof. Conjecture 1.1 is true for all graphs when k = 2 [19]. Now, we consider the case where k ≥ 3. Assume that ki of
the k largest Laplacian eigenvalues of G1 ∪G2 come from the Laplacian spectrum of Gi, where i = 1, 2 and k1 + k2 = k.

(i). The desired result holds for the graphs G1E
(1)
1 G2 and G1E

(1)
2 G2 due to [29]. Now, we only need to prove the result for

the graph G1E
(2)
2 G2. If k1k2 = 0, without loss of generality, suppose that k2 = 0. Then k1 = k and by Lemma 2.1, we have

Sk(G1E
(2)
2 G2) ≤ Sk(G1 ∪G2) + Sk(E

(2)
2 ) = Sk(G1) + 4

≤ e(G1) +
k2 + k

2
+ 4 = e(G1) + e(G2) + 2 +

k2 + k

2
+ 2− e(G2)

≤ e(G1E
(2)
2 G2) +

k2 + k

2
.

If k1k2 ≥ 2, then by Lemma 2.1, we have

Sk(G1E
(2)
2 G2) ≤ Sk(G1 ∪G2) + Sk(E

(2)
2 )

≤ e(G1) +
k21 + k1

2
+ e(G2) +

k22 + k2
2

+ 4 = e(G1) + e(G2) + 2 +
k21 + k22 + k1 + k2

2
+ 2

≤ e(G1E
(2)
2 G2) +

k21 + k22 + k1 + k2
2

+ k1k2 = e(G1E
(2)
2 G2) +

k2 + k

2
.
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(ii). If k1k2 = 0, without loss of generality, suppose that k2 = 0. Then k1 = k and by Lemma 2.1, for E
(j)
3 , j = 1, 2, . . . , 5, we

have

Sk(G1E
(j)
3 G2) ≤ Sk(G1 ∪G2) + Sk(E

(j)
3 ) = Sk(G1) + 6

≤ e(G1) +
k2 + k

2
+ 6 = e(G1) + e(G2) + 3 +

k2 + k

2
+ 3− e(G2)

≤ e(G1E
(j)
3 G2) +

k2 + k

2
.

If k1k2 ≥ 3, then by Lemma 2.1, we have

Sk(G1E
(j)
3 G2) ≤ Sk(G1 ∪G2) + Sk(E

(j)
3 )

≤ e(G1) +
k21 + k1

2
+ e(G2) +

k22 + k2
2

+ 6 = e(G1) + e(G2) + 3 +
k21 + k22 + k1 + k2

2
+ 3

≤ e(G1E
(j)
3 G2) +

k21 + k22 + k1 + k2
2

+ k1k2 = e(G1E
(j)
3 G2) +

k2 + k

2
.

If k1k2 = 2, without loss of generality, suppose that k1 = 1 and k2 = 2. Then, by Lemmas 2.1 and 2.4, we have

S3(G1E
(j)
3 G2) ≤ S3(G1 ∪G2) + S3(E

(j)
3 )

≤ µ1(G1) + e(G2) + 3 + 6 = e(G1) + e(G2) + 3 + 6 + µ1(G1)− e(G1)

≤ e(G1E
(j)
3 G2) + 6.

(iii). If k1k2 = 0, without loss of generality, suppose that k2 = 0. Then k1 = k and by Lemma 2.1, for E
(l)
4 , l = 1, 2, . . . , 11,

we have

Sk(G1E
(l)
4 G2) ≤ Sk(G1 ∪G2) + Sk(E

(l)
4 ) = Sk(G1) + Sk(E

(l)
4 )

≤ e(G1) +
k2 + k

2
+ 8 = e(G1) + e(G2) + 4 +

k2 + k

2
+ 4− e(G2)

≤ e(G1E
(l)
4 G2) +

k2 + k

2
.

If k1k2 ≥ 4, for E
(l)
4 , l = 1, 2, . . . , 11, by Lemma 2.1, we have

Sk(G1E
(l)
4 G2) ≤ Sk(G1 ∪G2) + Sk(E

(l)
4 )

≤ e(G1) +
k21 + k1

2
+ e(G2) +

k22 + k2
2

+ Sk(E
(l)
4 )

≤ e(G1) + e(G2) + 4 +
k21 + k22 + k1 + k2

2
+ 4

≤ e(G1E
(l)
4 G2) +

k21 + k22 + k1 + k2
2

+ k1k2 = e(G1E
(l)
4 G2) +

k2 + k

2
.

If k1k2 ≤ 3, without loss of generality, suppose that k1 = 1, k2 = 3 or k1 = 1, k2 = 2. If k1 = 1 and k2 = 3, then by Lemmas
2.1 and 2.4, we have

S4(G1E
(l)
4 G2) ≤ S4(G1 ∪G2) + S4(E

(l)
4 ) = µ1(G1) + S3(G2) + 8

≤ µ1(G1) + e(G2) + 6 + 8 = e(G1) + e(G2) + 4 + 10 + µ1(G1)− e(G1)

≤ e(G1E
(l)
4 G2) + 10

for l = 1, 2, . . . , 11.
If k1 = 1 and k2 = 2, then by Lemmas 2.1, 2.2 and 2.4, we have

S3(G1E
(l)
4 G2) ≤ S3(G1 ∪G2) + S3(E

(l)
4 )

≤ µ1(G1) + e(G2) + 3 + 8 = e(G1) + e(G2) + 4 + 6 + µ1(G1) + 1− e(G1)

≤ e(G1E
(l)
4 G2) + 6

for l = 1, 2, . . . , 11.
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Corollary 3.2. If G is one of the following graphs, then Brouwer’s conjecture holds for G:

Kn1
E

(1)
1 Kn2

E
(1)
1 · · ·E(1)

1 Knq
,

Kn1
E

(t)
2 Kn2

E
(t)
2 · · ·E(t)

2 Knq
,

Kn1E
(j)
3 Kn2

E
(j)
3 · · ·E(j)

3 Knq
,

Kn1E
(l)
4 Kn2E

(l)
4 · · ·E(l)

4 Knq ,

where ni ≥ 4 with i = 1, 2, . . . , q, and q ≥ 2, while t = 1, 2, j = 1, 2, . . . , 5, and l = 1, 2, . . . , 11.
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