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Abstract
We investigate the degree-based function index If (G) =

∑
vw∈E(G) f(dG(v), dG(w)) of a graph G, where E(G) is the set

of edges of G, dG(v) and dG(w) are the degrees of vertices v and w in G, respectively, and f is a symmetric function of
two variables which satisfies some conditions. We obtain sharp upper bounds on If for trees, unicyclic graphs and bicyclic
graphs with given bipartition. Then, among trees and unicyclic graphs with given bipartition, we present graphs with the
largest values of the first general Gourava index FGOa(G) =

∑
vw∈E(G)[dG(v)dG(w) + dG(v) + dG(w)]a for a ≥ 1, Bollobás-

Erdős-Sarkar index BESl,a(G) =
∑

vw∈E(G)[(dG(v) + l)(dG(w) + l)]a for a ≥ 1 and l > −1 (with its special cases which
are general reduced second Zagreb index GRMl(G) =

∑
vw∈E(G)(dG(v) + l)(dG(w) + l) for l > −1, and general Randić

index Ra(G) =
∑

vw∈E(G)[dG(v)dG(w)]a for a ≥ 1), general Sombor index SOa,b(G) =
∑

vw∈E(G)([dG(v)]
a + [dG(w)]a)b,

generalized Zagreb index GZa,b(G) =
∑

vw∈E(G)([dG(v)]
a[dG(w)]b+[dG(v)]

b[dG(w)]a) and one other general index Ma,b(G) =∑
vw∈E(G)[dG(v)dG(w)]a[dG(v) + dG(w)]b for a ≥ 1 and b ≥ 1.

Keywords: tree; unicyclic graph; bicyclic graph; bipartition; function index.
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1. Introduction and preliminary results

We denote by V (G) and E(G) the set of vertices and edges of a graph G, respectively. The set/number of vertices adjacent
to a vertex v is the neighbourhood NG(v)/degree dG(v) of v in G. A vertex of degree 1 is a pendant vertex. The distance
between v and w is the number of edges in a shortest path connecting v and w in G. The distance between any two furthest
vertices in G is the diameter of G.

A tree, unicyclic graph and bicyclic graph is a simple connected graph with n vertices which has n−1, n and n+1 edges,
respectively. In a bipartite graph, vertices can be partitioned into two partite sets V1 and V2, where any two vertices from
the same set are non-adjacent. if |V1| = p and |V2| = q, then a bipartite graph has a (p, q)-bipartition.

Indices of graphs are investigated due to their extensive applications, particularly in chemistry. Research on bond
incident degree indices was carried for example in [1] and [21]. We use a real-valued symmetric function of two variables
f , to study the degree-based function index

If (G) =
∑

vw∈E(G)

f(dG(v), dG(w)).

Let us present several general indices defined for a graph G and a, b ∈ R.
If f(dG(v), dG(w)) = [dG(v)dG(w)]

a, we obtain the general Randić index

Ra(G) =
∑

vw∈E(G)

[dG(v)dG(w)]
a

first considered by Bollobás and Erdős [4]. Note that R1 is the second Zagreb index and R2 is the second hyper-Zagreb
index.

The general reduced second Zagreb index

GRMa(G) =
∑

vw∈E(G)

(dG(v) + a)(dG(w) + a)

was introduced in [10]. Note that GRM0 is the second Zagreb index.
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The Bollobás-Erdős-Sarkar index

BESl,a(G) =
∑

vw∈E(G)

[(dG(v) + l)(dG(w) + l)]a

which was introduced in [2] generalizes the previous two general indices. We consider it for a ≥ 1 and l > −1. Note that
BES0,a(G) = Ra and BESl,1(G) = GRMl.

The first general Gourava index

FGOa(G) =
∑

vw∈E(G)

[dG(v)dG(w) + dG(v) + dG(w)]
a

was defined in [18]. Note that FGO1 is the first Gourava index (defined in [13]) and FGO2 is the first hyper-Gourava index
(defined in [12]).

The general Sombor index SOa,b(G) is obtained from If (G) when f(dG(v), dG(w)) = ([dG(v)]
b + [dG(w)]

b)a. We have

SOa,b(G) =
∑

vw∈E(G)

([dG(v)]
b + [dG(w)]

b)a;

see [9]. Note that SOa,1(G) is the general sum-connectivity index introduced by Zhou and Trinajstić [20], SO1,1 is the first
Zagreb index, SO2,1 is the first hyper-Zagreb index and SO1,2 is the forgotten index. The generalized Zagreb index

GZa,b(G) =
∑

vw∈E(G)

([dG(v)]
a[dG(w)]

b + [dG(v)]
b[dG(w)]

a)

was introduced by Azari and Iranmanesh [3] and for one other general index

Ma,b(G) =
∑

vw∈E(G)

[dG(v)dG(w)]
a[dG(v) + dG(w)]

b;

see [7]. Note that M1,1 is the second Gourava index (see [13]) known also as the third redefined Zagreb index and M2,2 is
the second hyper-Gourava index (see [12]).

Trees, unicyclic and bicyclic graphs are important networks that can represent chemical structures. Among trees and
unicyclic graphs with given bipartition, trees having the largest and smallest Steiner Wiener index were given in [14],
trees with the smallest energy of Hosoya index were presented in [19], trees with the smallest Zagreb eccentricity indices
were obtained in [16], trees with the extremal general eccentric distance sum were given in [6], trees and unicyclic graphs
with the largest and smallest hyper-Wiener index were obtained in [5], and unicyclic graphs with given bipartition having
the largest Wiener index were presented in [11]. Indices of trees were studied also in [8] and [15]. Indices for bicyclic
graphs with given bipartition have not been studied.

Except for trees, we study unicyclic and bicyclic graphs which are bipartite. It follows that those graphs contain only
even cycles.

Let us introduce Definition 1.1.

Definition 1.1. A symmetric function f(x, y) of two variables x and y having property P is any function such that

(i) f(x1, y1) < f(x2, y2) for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2, where {x1, y1} ≠ {x2, y2},

(ii) g(x1, y1) = f(x1 + c, y1 + c′) − f(x1, y1) ≤ f(x2 + c, y2 + c′) − f(x2, y2) = g(x2, y2) for 1 ≤ x1 ≤ x2, 1 ≤ y1 ≤ y2 and
c, c′ ≥ 0.

Lemma 1.1. The following functions of two variables x and y have property P :

• (xy + x+ y)a for a ≥ 1,

• (xb + yb)a, (xy)a(x+ y)b and xayb + xbya for a, b ≥ 1,

• [(x+ l)(y + l)]a for a ≥ 1, l > −1.

Proof. Lemma 1.1 for the functions (xy+x+ y)a, (xy)a(x+ y)b and xayb+xbya, where a, b ≥ 1, was proved in [18]. Lemma
1.1 for (xb + yb)a, where a, b ≥ 1, was proved in [17].

Let f(x, y) = [(x+ l)(y + l)]a, where x, y ≥ 1 and l > −1.

(i) For a > 0, we get ∂f(x,y)
∂x = a[(x+ l)(y + l)]a−1(y + l) > 0. Similarly, ∂f(x,y)

∂y > 0, so the condition (i) of Definition 1.1 is
satisfied.
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(ii) Let
g(x, y) = f(x+ c, y + c′)− f(x, y) = [(x+ l + c)(y + l + c′)]a − [(x+ l)(y + l)]a.

Then
∂g(x, y)

∂x
= a[(x+ l + c)(y + l + c′)]a−1(y + l + c′)− a[(x+ l)(y + l)]a−1(y + l).

Condition (i) holds for a > 0, thus

[(x+ l + c)(y + l + c′)]a−1 > [(x+ l)(y + l)]a−1

for a > 1. Note that y + l + c′ ≥ y + l, so ∂g(x,y)
∂x > 0 for a > 1. For a = 1, we get ∂g(x,y)

∂x = c′ ≥ 0, therefore ∂g(x,y)
∂x ≥ 0

for a ≥ 1. Similarly, ∂g(x,y)
∂y ≥ 0 for a ≥ 1, so the condition (ii) of Definition 1.1 is satisfied.

Thus, the function [(x+ l)(y + l)]a has property P for a ≥ 1 and l > −1.

Lemma 1.2 is used in the proofs of our theorems mostly for s = 2. Note that the vertex v can be adjacent to more than
s non-pendant vertices in G′.

Lemma 1.2. Let p, q ≥ 2. Let G′ be a connected graph having a (p, q)-bipartition containing two vertices u and v such that u
is adjacent to exactly s ≥ 1 non-pendant vertices, all of those s vertices are adjacent also to v, dG′(u) ≥ s+1 and dG′(v) ≥ s+1.
If f has property P , then there exists a connected graph G′′ with the same number of edges having a (p, q)-bipartition such
that If (G′) < If (G

′′).

Proof. Let us denote the non-pendant neighbours of u in G′ by w1, w2, . . . , ws, and the pendant neighbours of u in G′ by
u1, u2, . . . , ut. So dG′(u) = s + t, where s, t ≥ 1. The vertex v is also adjacent to w1, w2, . . . , ws in G′, and v has r other
neighbours v1, v2, . . . , vr, where r ≥ 1. So dG′(v) = s+ r. Let V (G′′) = V (G′) and

E(G′′) = {vu1, vu2, . . . , vut} ∪ E(G′) \ {uu1, uu2, . . . , uut}.

Clearly, G′ and G′′ contain the same number of edges. Since u and v are in the same partite set, G′′ has a (p, q)-bipartition.
We get dG′′(u) = s, dG′′(v) = s + r + t and dG′(x) = dG′′(x) for x ∈ V (G′) \ {u, v}. We have dG′(ui) = dG′′(ui) = 1 for
i = 1, 2, . . . , t. Then

If (G
′)− If (G

′′) =

t∑
i=1

[f(dG′(u), dG′(ui))− f(dG′′(v), dG′′(ui))] +

r∑
i=1

[f(dG′(v), dG′(vi))− f(dG′′(v), dG′′(vi))]

+

s∑
i=1

[f(dG′(u), dG′(wi))− f(dG′′(u), dG′′(wi))] +

s∑
i=1

[f(dG′(v), dG′(wi))− f(dG′′(v), dG′′(wi))]

= t[f(s+ t, 1)− f(s+ r + t, 1)] +

r∑
i=1

[f(s+ r, dG′(vi))− f(s+ r + t, dG′(vi))]

+

s∑
i=1

[f(s+ t, dG′(wi))− f(s, dG′(wi)) + f(s+ r, dG′(wi))− f(s+ r + t, dG′(wi))].

Since the function f has property P , by Definition 1.1 (i), we get

f(s+ t, 1) < f(s+ r + t, 1) and f(s+ r, dG′(vi)) < f(s+ r + t, dG′(vi)).

By Definition 1.1 (ii), we have

f(s+ t, dG′(wi))− f(s, dG′(wi)) ≤ f(s+ r + t, dG′(wi))− f(s+ r, dG′(wi)).

So If (G
′)− If (G

′′) < 0, hence If (G
′) < If (G

′′).

In Lemma 1.2,

• if G′ is a tree, then s = 1,

• if G′ is a unicyclic graph, then 1 ≤ s ≤ 2,

• if G′ is a bicyclic graph, then 1 ≤ s ≤ 3.

For s = 1, we present a corollary of Lemma 1.2.

Corollary 1.1. Let p, q ≥ 2. Let G′ be a connected graph having a (p, q)-bipartition containing two non-pendant vertices u

and v such that u is adjacent to exactly one non-pendant vertex and that vertex is adjacent also to v. If f has property P ,
then there exists a connected graph G′′ with the same number of edges having a (p, q)-bipartition such that If (G′) < If (G

′′).
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Remark 1.1. The graphs G′ and G′′ stated in Lemma 1.2 and Corollary 1.1 are connected with the same number of edges.
Thus if G′ is a tree/unicyclic graph/bicyclic graph, then G′′ is a tree/unicyclic graph/bicyclic graph.

2. Main results

First, we consider trees. The unique tree having a (p, 1)-bipartition is the star Sp+1. For p ≥ q ≥ 2, the double star Sp−1,q−1

presented in Figure 2.1 is a tree containing two non-pendant vertices, where one non-pendant vertex is adjacent to p − 1

pendant vertices and the other non-pendant vertex is adjacent to q − 1 pendant vertices.

p− 1 q − 1

Figure 2.1: Tree Sp−1,q−1.

We show that Sp−1,q−1 is the extremal tree for Theorem 2.1.

Theorem 2.1. Let G be any tree which has a (p, q)-bipartition, where p ≥ q ≥ 2. If f has property P , then

If (G) ≤ (p− 1)f(p, 1) + (q − 1)f(q, 1) + f(p, q)

with equality if and only if G is Sp−1,q−1.

Proof. Let G′ be any tree having a (p, q)-bipartition with the largest If . If the diameter of G′ would be at least 4, then we
can denote the first five vertices of its longest path by u1, u, w1, v, v1, and by Corollary 1.1 (or Lemma 1.2 and its proof) and
Remark 1.1, there would exist a tree with the same bipartition having larger If .

So, the diameter of G′ is at most 3. For p ≥ q ≥ 2, there exists no tree with diameter smaller than 3, therefore G′ has
diameter 3. The unique tree with a (p, q)-bipartition and diameter 3 is Sp−1,q−1, so T ′ is Sp−1,q−1 and

If (Sp−1,q−1) = (p− 1)f(p, 1) + (q − 1)f(q, 1) + f(p, q).

There is no unicyclic graph having a (p, 1)-bipartition. For p ≥ q ≥ 2, let C4,p−2,q−2 be the graph which consists of the
cycle C4, where one vertex of that C4 is adjacent to p− 2 pendant vertices, and one of its neighbours on that C4 is adjacent
to q − 2 pendant vertices; see Figure 2.2.

p− 2 q − 2

Figure 2.2: Unicyclic graph C4,p−2,q−2.

Let us prove that C4,p−2,q−2 is the extremal unicyclic graph with a (p, q)-bipartition.

Theorem 2.2. Let G be any unicyclic graph which has a (p, q)-bipartition, where p ≥ q ≥ 2. If f has property P , then

If (G) ≤ (p− 2)f(p, 1) + (q − 2)f(q, 1) + f(p, q) + f(p, 2) + f(q, 2) + f(2, 2)

with equality if and only if G is C4,p−2,q−2.

Proof. Let G′ be a unicyclic graph with a (p, q)-bipartition having the largest If . Let v1v2 . . . vkv1, where k ≥ 4 is even, be
the cycle of G′.

Claim 1. The cycle of G′ has length 4.

Assume to the contrary that the length of the cycle is even k ≥ 6. Let us define G1 such that V (G1) = V (G′) and

E(G1) = ∪v∈NG′ (vk−1)\{vk}{v1v} ∪ E(G′) \ ∪v∈NG′ (vk−1)\{vk}{vk−1v}.
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Since v1 and vk−1 are in the same partite set, G1 has a (p, q)-bipartition. The graph G1 contains the cycle v1v2 . . . vk−2v1 of
length k − 2. Let dG′(v1) = t and dG′(vk−1) = r. We have t, r ≥ 2, dG1

(v1) = t+ r − 1 and dG1
(vk−1) = 1. Then

If (G
′)− If (G1) =

∑
u∈NG′ (v1)\{vk}

[f(dG′(v1), dG′(u))− f(dG1
(v1), dG1

(u))]

+
∑

v∈NG′ (vk−1)\{vk}

[f(dG′(vk−1), dG′(v))− f(dG1
(v1), dG1

(v))]

+ f(dG′(v1), dG′(vk))− f(dG1(v1), dG1(vk)) + f(dG′(vk−1), dG′(vk))− f(dG1(vk−1), dG1(vk))

=
∑

u∈NG′ (v1)\{vk}

[f(t, dG′(u))− f(t+ r − 1, dG1
(u))] +

∑
v∈NG′ (vk−1)\{vk}

[f(r, dG′(v))− f(t+ r − 1, dG1
(v))]

+ f(t, dG′(vk))− f(t+ r − 1, dG1
(vk)) + f(r, dG′(vk))− f(1, dG1

(vk))

The function f has property P , so by Definition 1.1 (i),

f(t, dG′(u)) < f(t+ r − 1, dG1
(u)) and f(r, dG′(v)) < f(t+ r − 1, dG1

(v)),

By Definition 1.1 (ii),
f(r, dG′(vk))− f(1, dG1

(vk)) ≤ f(t+ r − 1, dG1
(vk))− f(t, dG′(vk))

So If (G
′)− If (G1) < 0, hence If (G

′) < If (G1). Thus G′ does not have the largest If , a contradiction.

Claim 2. Each pendant vertex of G′ is adjacent to a vertex of the cycle.

If G′ would contain a pendant vertex not adjacent to a vertex of the cycle, we can denote by u the unique vertex which is
adjacent to a (pendant) vertex furthest from the cycle, and denote by v any non-pendant vertex whose distance is 2 from
u. Then by Corollary 1.1 and Remark 1.1, there would be a unicyclic graph with the same bipartition having larger If .

Claim 3. One of any two non-adjacent vertices of the cycle has degree 2 in G′.

If two non-adjacent vertices of the cycle C4 would have degree at least 3 in G′, say dG′(v1) ≥ 3 and dG′(v3) ≥ 3, we can use
v1 = u and v3 = v. Then by Lemma 1.2 and Remark 1.1, there would be a unicyclic graph with the same bipartition having
larger If .

The only unicyclic graph having a (p, q)-bipartition satisfying Claims 1, 2 and 3 is C4,p−2,q−2. So G′ is C4,p−2,q−2 and

If (C4,p−2,q−2) = (p− 2)f(p, 1) + (q − 2)f(q, 1) + f(p, q) + f(p, 2) + f(q, 2) + f(2, 2).

There is no bicyclic graph with a (p, 1)-bipartition or (2, 2)-bipartition. For j ≥ 2 and j′ ≥ 3, the graph C ′
4,j−2,j′−3 is

obtained from the complete bipartite graph K3,2 by joining one vertex of degree 2 in that K3,2 to j − 2 new vertices, and
one vertex of degree 3 in that K3,2 to j′ − 3 new vertices; see Figure 2.3.

j − 2 j′ − 3

Figure 2.3: Bicyclic graph C ′
4,j−2,j′−3.

Let us present upper bounds on If for bicyclic graphs.

Theorem 2.3. Let G be any bicyclic graph which has a (p, q)-bipartition. Let f be a function having property P .
For p ≥ 3 and q = 2, we have

If (G) ≤ (p− 3)f(p, 1) + 3f(p, 2) + 3f(3, 2)

with equality if and only if G is C ′
4,0,p−3.

For p ≥ q ≥ 3,

If (G) ≤

{
(p− 2)f(p, 1) + (q − 3)f(q, 1) + f(p, q) + f(p, 3) + 2f(q, 2) + 2f(3, 2) if c ≥ 0,

(q − 2)f(q, 1) + (p− 3)f(p, 1) + f(p, q) + f(q, 3) + 2f(p, 2) + 2f(3, 2) if c < 0,

where c = f(p, 1)− f(q, 1) + f(p, 3)− f(q, 3) + 2f(q, 2)− 2f(p, 2).

Equalities for If (G) hold if and only if G is C ′
4,p−2,q−3 for c > 0, G is any of the graphs C ′

4,p−2,q−3, C ′
4,q−2,p−3 for c = 0,

and G is C ′
4,q−2,p−3 for c < 0.
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Proof. Let G′ be a bicyclic graph with a (p, q)-bipartition having the largest If . Let Ck and Cl be the two shortest cycles in
G′. (Note that if Ck and Cl have a common edge, then G′ contains one other cycle, otherwise if Ck and Cl have no common
edge, then G′ contains no other cycle.) Since G′ is bipartite, k, l ≥ 4 are even. Let A be a path connecting Ck and Cl. Let
Ck = v1v2 . . . vkv1 and Cl = u1u2 . . . ulu1. The cycles Ck and Cl have x ≥ 0 common vertices. If x ≥ 1, then the length of A is
0 and we can assume that vi = ui for 1 = 1, 2, . . . , x. We have x ≤ k

2 and x ≤ l
2 , otherwise if x > k

2 or x > l
2 , it would imply

that the third cycle would not be the longest cycle. Let S be the set of all the vertices of Ck, Cl and A.

Claim 1. The cycles Ck and Cl have length 4.

Assume to the contrary that the length of Ck or Cl, say Ck, is at least 6. So k ≥ 6 is even. We can use the proof of Claim 1
presented in the proof of Theorem 2.2 to show that there exists a graph G1 containing the cycle v1v2 . . . vk−2v1 of length k−2,
such that If (G′) < If (G1). Since the cycle Cl remains the same in G1, the graph G1 is bicyclic and it has a (p, q)-bipartition.
Since G′ does not have the largest If , a contradiction.

Claim 2. Each pendant vertex of G′ is adjacent to a vertex in S.

If G′ would contain a pendant vertex not adjacent to a vertex in S, then by Corollary 1.1 and Remark 1.1, G′ would not
have the largest If .

Claim 3. The cycles Ck and Cl have at least one edge in common.

Assume that the cycles Ck and Cl have no edge in common. Without loss of generality, suppose that the path A connecting
Ck and Cl contains the vertices v1 and u1. By Claim 1, we have k, l = 4.

Note that v3 and u3 are not adjacent to pendant vertices (otherwise, if say v3 is adjacent to a pendant vertex, then using
v3 = u and v1 = v, by Lemma 1.2 and Remark 1.1, there would be a bicyclic graph with the same bipartition having larger
If ).

Similarly, by Lemma 1.2, one of v2, v4 is not adjacent to pendant vertices and one of u2, u4 is not adjacent to pendant
vertices. We can assume that v4 and u4 are not adjacent to pendant vertices, so dG′(v3) = dG′(u3) = dG′(v4) = dG′(u4) = 2.
Let dG′(v1) = z, dG′(v2) = r and dG′(u2) = t. We have z ≥ 3 and r, t ≥ 2.

Let the length of A be even. We define G2 such that V (G2) = V (G′) and E(G2) = {u2v3} ∪ E(G′) \ {u2u3}. Since the
length of A is even, v3 and u3 are in the same partite set, so G2 has a (p, q)-bipartition. We have dG2(v3) = 3 and dG2(u3) = 1.
Then

If (G
′)− If (G2) = f(dG′(u2), dG′(u3))− f(dG2(u2), dG2(v3)) + f(dG′(u3), dG′(u4))− f(dG2(u3), dG2(u4))

+ f(dG′(v2), dG′(v3))− f(dG2
(v2), dG2

(v3)) + f(dG′(v3), dG′(v4))− f(dG2
(v3), dG2

(v4))

= f(t, 2)− f(t, 3) + f(2, 2)− f(1, 2) + f(r, 2)− f(r, 3) + f(2, 2)− f(3, 2).

Since f has property P , by Definition 1.1 (i), we get f(t, 2) < f(t, 3) and f(r, 2) < f(r, 3). By Definition 1.1 (ii), we have
f(2, 2)− f(1, 2) ≤ f(3, 2)− f(2, 2). Thus If (G

′)− If (G2) < 0, so If (G
′) < If (G2).

Let the length of A be odd. We define G3 such that V (G3) = V (G′) and E(G3) = {u2v4} ∪ E(G′) \ {u2u3}. Since the
length of A is odd, v4 and u3 are in the same partite set, so G3 has a (p, q)-bipartition. We have dG3(v4) = 3 and dG3(u3) = 1.
Then

If (G
′)− If (G3) = f(dG′(u2), dG′(u3))− f(dG3(u2), dG3(v4)) + f(dG′(u3), dG′(u4))− f(dG3(u3), dG3(u4))

+ f(dG′(v1), dG′(v4))− f(dG3
(v1), dG3

(v4)) + f(dG′(v3), dG′(v4))− f(dG3
(v3), dG3

(v4))

= f(t, 2)− f(t, 3) + f(2, 2)− f(1, 2) + f(z, 2)− f(z, 3) + f(2, 2)− f(3, 2),

which is the same situation as in the case when the length of A is even. We obtain If (G
′) < If (G3), so G′ does not have the

largest If , a contradiction.

Claim 4. The cycles Ck and Cl have two edges in common.

By Claim 1, the cycles Ck and Cl have length 4, so they cannot share more than 2 edges. By Claim 3, Ck and Cl share at
least one edge. We prove by contradiction that Ck and Cl share two edges.

Assume that Ck and Cl share exactly one edge v1v2. Let dG′(v1) = z. We have z ≥ 3. Note that v3, v4, u3 and u4 are not ad-
jacent to pendant vertices (otherwise, if say v3 is adjacent to a pendant vertex, then using v3 = u and v1 = v, by Lemma 1.2,
there would be a bicyclic graph with the same bipartition having larger If ). So dG′(v3) = dG′(v4) = dG′(u3) = dG′(u4) = 2.
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We define G4 such that V (G4) = V (G′) and E(G4) = {u3v4} ∪ E(G′) \ {u3u4}. Since v4 and u4 are in the same partite
set, G4 has a (p, q)-bipartition. We get dG4

(v4) = 3 and dG4
(u4) = 1. Then

If (G
′)− If (G4) = f(dG′(u3), dG′(u4))− f(dG4

(u3), dG4
(v4)) + f(dG′(v1), dG′(u4))− f(dG4

(v1), dG4
(u4))

+ f(dG′(v1), dG′(v4))− f(dG4(v1), dG4(v4)) + f(dG′(v3), dG′(v4))− f(dG4(v3), dG4(v4))

= f(2, 2)− f(2, 3) + f(z, 2)− f(z, 1) + f(z, 2)− f(z, 3) + f(2, 2)− f(2, 3).

We obtain f(2, 2) < f(2, 3) by Definition 1.1 (i) and f(z, 2) − f(z, 1) ≤ f(z, 3) − f(z, 2) by Definition 1.1 (ii). Therefore,
If (G

′) < If (G4), hence G′ does not have the largest If , a contradiction.

So, by Claim 4, Ck and Cl share two edges v1v2 and v2v3. By Claim 1, we have k, l = 4, so v4 and u4 are adjacent to v1

and v3. Note that at most one of the vertices v2, v4, u4 is adjacent to pendant vertices (otherwise if say each of v2 and v4

would be adjacent to a pendant vertex we can use v2 = u and v4 = v, and by Lemma 1.2, there would be a bicyclic graph
with the same bipartition having larger If ). Similarly, by Lemma 1.2, at most one of the vertices v1 and v3 is adjacent to
pendant vertices.

Let q = 2. Then G′ is C ′
4,0,p−3 and we obtain

If (C
′
4,0,p−3) = (p− 3)f(p, 1) + 3f(p, 2) + 3f(3, 2).

Let p ≥ q ≥ 3. It follows that G′ is C ′
4,p−2,q−3 or C ′

4,q−2,p−3. We compare their If . We obtain

If (C
′
4,p−2,q−3) = (p− 2)f(p, 1) + (q − 3)f(q, 1) + f(p, q) + f(p, 3) + 2f(q, 2) + 2f(3, 2)

and
If (C

′
4,q−2,p−3) = (q − 2)f(q, 1) + (p− 3)f(p, 1) + f(p, q) + f(q, 3) + 2f(p, 2) + 2f(3, 2).

Then
If (C

′
4,p−2,q−3)− If (C

′
4,q−2,p−3) = f(p, 1)− f(q, 1) + f(p, 3)− f(q, 3) + 2f(q, 2)− 2f(p, 2) = c.

So, G′ is C ′
4,p−2,q−3 if c > 0, G′ is C ′

4,q−2,p−3 if c < 0, and G′ is any of the graphs C ′
4,p−2,q−3, C ′

4,q−2,p−3 if c = 0.

Note that if p = q, then c = 0 in Theorem 2.3 and

If (G) ≤ (2p− 5)f(p, 1) + f(p, p) + f(p, 3) + 2f(p, 2) + 2f(3, 2).

3. Conclusion

In Theorems 2.1 and 2.2, we obtained sharp upper bounds on If for trees and unicyclic graphs, respectively. By Theorems
2.1, 2.2 and Lemma 1.1, we get Corollary 3.1 for several general indices.

Corollary 3.1. Among trees and unicyclic graphs with a (p, q)-bipartition, where p ≥ q ≥ 2, Sp−1,q−1 is the unique tree and
C4,p−2,q−2 is the unique unicyclic graph having the largest value of

• FGOa for a ≥ 1,

• SOa,b, Ma,b and GZa,b for a, b ≥ 1,

• BESl,a for a ≥ 1 and l > −1 (with its special cases GRMl for l > −1 and Ra for a ≥ 1).

In Theorem 2.3, we presented upper bounds on If for bicyclic graphs. It is more complicated to find extremal graphs
for general indices for bicyclic graphs. Let us consider Theorem 2.3 for f(x, y) = (x+ a)(y + a). We obtain

c = (p+ a)(1 + a)− (q + a)(1 + a) + (p+ a)(3 + a)− (q + a)(3 + a) + 2(q + a)(2 + a)− 2(p+ a)(2 + a) = 0.

Thus, by Theorem 2.3 and Lemma 1.1, among bicyclic graphs with a (p, q)-bipartition, where p ≥ q ≥ 3, the graphs
C ′

4,p−2,q−3 and C ′
4,q−2,p−3 have the largest value of GRMa for a > −1.

Similarly, one can study the value of c for other functions given in Lemma 1.1. We leave this task for future research.
Also, it would be interesting to know graphs with the largest values of If among graphs with given bipartition containing
more cycles (such as tricyclic and tetracyclic graphs). Therefore, we state the following open problem.

Problem 3.1. Let f be a function with property P . Among connected graphs with a (p, q)-bipartition and p + q + i edges,
where i ≥ 2, find graphs having the largest value of If .

Note that a connected graph is tricyclic if it has p+ q + 2 edges and it is tetracyclic if it has p+ q + 3 edges.
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