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Abstract
The [r, s, t]-coloring is a generalization of the classical vertex, edge, and total colorings, where two vertices, two edges, and
a vertex and its incident edges have colors distant by at least r, s, and t, respectively. The square of a graph G is a graph
obtained from G by adding an edge between two vertices at a distance at most 2 in G. A cylindrical grid is equivalent to the
Cartesian product of a path and a cycle. In this article, colorings for the square of cylindrical grids are discussed. It is shown
that such graphs are class one graphs (according to Vizing’s theorem). For the [r, s, t]-coloring of these graphs, particular
values of r, s, and t are presented, for which the minimum number of colors needed in an [r, s, t]-coloring is determined.
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1. Introduction

In graph coloring, a vertex coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices
are colored differently. Analogously, different colors are assigned to adjacent edges in an edge coloring. In a total coloring
of a graph G, colors are given to both vertices and edges of the graph, such that two adjacent vertices, two adjacent edges
or a vertex and its incident edges must have different colors. A coloring of a graph G = (V,E) with vertex set V and edge
set E is then defined as a function c on S into a set of colors where S represents V , E or V ∪ E for respectively the vertex,
edge and total colorings. For every coloring, a parameter is defined as the minimum number of colors used to provide this
coloring. The chromatic number χ(G), the chromatic index χ′(G) and the total chromatic number χ′′(G) are the parameters
related to respectively the vertex, edge and total colorings. In 2007 a new coloring was introduced in [8] that generalizes
several of these colorings. Let G = (V,E) be a graph with vertex set V and edge set E. Given nonnegative integers r, s,
and t, a [r, s, t]-coloring of a graph G is a function c from V ∪E to the color set {0, 1, . . . , k − 1} such that |c(xi)− c(xj)| ≥ r
for every two adjacent vertices xi, xj ∈ V , |c(ei) − c(ej)| ≥ s for every two adjacent edges ei, ej ∈ E, and |c(xi) − c(ej)| ≥ t

for every vertex xi and an incident edge ej . Thus a [r, s, t]-coloring is a generalization of the three classical colorings: a
[1,0,0]-coloring represents a vertex coloring, a [0,1,0]-coloring is an edge coloring and a [1,1,1]-coloring corresponds to a
total coloring. The minimum number k such that G admits a [r, s, t]-coloring is called the [r, s, t]-chromatic number and is
denoted by χr,s,t(G). The [r, s, t]-coloring can have many applications in different fields, like in scheduling [8] (to elaborate a
planning with different constraints), for the channel assignment problem (where different labels representing frequencies
are assigned to vertices and edges), etc.

In [8], the authors gave some properties of the [r, s, t]-chromatic number and proved several general bounds on the
parameter; for instance, see the next result.

Theorem 1.1. [8] For a graph G,

max{r(χ(G)− 1) + 1, s(χ′(G)− 1) + 1, t+ 1} ≤ χr,s,t(G) ≤ r(χ(G)− 1) + s(χ′(G)− 1) + t+ 1.

They also presented exact values and some bounds for the parameter according to particular values of r, s, and t

(min{r, s, t} = 0, r = s = 1, r = t = 1, s = t = 1, ...) and investigated the class of complete graphs. In [16] and [17], the
[r, s, t]-chromatic number was completely determined for paths and cycles for any value of r, s, and t. The study of stars
was done in [7] and these graphs were also studied in [3] and extended to bipartite graphs and trees. Some graph products
were also considered in [4].
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In the following, graphs without loops or multiple edges are considered where the maximum degree of a graph G is
denoted by ∆(G). In the graphs, every edge e = xy with endvertices x and y is undirected. The Cartesian product of two
graphs G and H, denoted by G�H, is the graph with vertex set V (G) × V (H) and the neighborhood of a vertex (x1, x2) is
N((x1, x2)) = ({x1} × NH(x2)) ∪ (NG(x1) × {x2}), where NG(x) is the neighborhood of x in G. Thus for a path Pn and a
cycle Cm, the graph Pn�Cm is isomorphic to a cylindrical grid. Cartesian products of graphs attracted many attention for
different problems (coloring, domination, etc.) [1,6,9,10].

The square of a graph G, denoted by [G]2, is defined from G by V ([G]2) = V (G) and any edge xy ∈ E([G]2) verifies
either xy ∈ E(G) or x and y have a common neighbor in G. The graph [G]2 will be called a squared graph. The problem
of coloring squared graphs has been very studied. Several works focused on the chromatic number of squared planar
graphs [5, 11, 14, 15]. And Xue et al. [18] considered the chromatic and the equitable chromatic numbers of squared
Sierpiński graphs. The chromatic number of the square of Cartesian products was also investigated. Sopena and Wu [13]
(completed by Shao and Vesel [12]) were interested in the Cartesian product of two cycles, while Chiang and Yan [2]
considered the Cartesian product of paths and cycles. In particular, they proved

Theorem 1.2. [2] Let n ≥ 2 and G = Cm�Pn. Then

χ([G]2) =


2 if n = 2 and m ≡ 0(mod 4),
5 if n = 2 and m ∈ {3, 6},
5 if n ≥ 3 and m 6≡ 0(mod 5),
4 otherwise.

In this article, we discuss the [r, s, t]-coloring of squared cylindrical grids. In particular, we prove that the general
bounds of the [r, s, t]-chromatic number given in Theorem 1.1 are tight since both are reachable under conditions for r,
s, and t. In Theorem 1.1, the bounds are based on the chromatic index of the considered graphs and we also investigate
this parameter for squared cylindrical grids. Thus, we start with some notations in Section 2. Then, in Section 3, we
characterize the chromatic index of such grids while in Section 4 we discuss [r, s, t]-colorings of these graphs.

2. Notations

Let G andH be two graphs such that V (G) = {x1, x2, . . . , xnG
} and V (H) = {y1, y2, . . . , ynH

}. By definition, the graph G�H
can be viewed as a grid where the nG rows are nG copies of H (denoted by H1, H2, . . . ,HnG ) and the nH columns are nH
copies of G (denoted by G1, G2, . . . , GnH ). A vertex in G�H is then denoted by xi,j where i is the column and j the row in
the grid (i.e. the vertex in Gi and Hj).
The squared graph of the Cartesian product G�H is denoted by [G�H]2. Edges E([G�H]2) can be decomposed into three
subsets. On one hand, we said that G�H has some copies of G and H. The first subset contains the edges from the copies
Gi and Hj . We denote this set by E ([G�H]2) = {

⋃nH

i=1E(Gi),
⋃nG

j=1E(Hj)}. On the other hand, the remaining edges (i.e.
edges due to the power 2) can be distributed into two subsets. The edges due to the power two in all the copies Gi and Hj

form the set of power edges (denoted by P([G�H]2)) while the edges added between copies of [Gi]2 and [Hj ]2 form the cross
edges (denoted by C ([G�H]2)). Thus we have E([G�H]2) = E ([G�H]2)∪P([G�H]2)∪C ([G�H]2). We can see that sets E

and P can be used for any graph, while the set C is specific to the Cartesian products.
Note that for a subset E′ ⊆ E(G), the number of colors used to properly color E′ will be denoted by η(E′).

3. The chromatic index of a squared cylindrical grid

In this section, we give the chromatic index of a squared cylindrical grid. We start with preliminary results to evaluate
the number of colors needed for each set of edges in [Pn�Cm]2.

We first recall the chromatic index of a path and a cycle, and we deduce the number of colors needed for the power edges
of a squared path and a squared cycle.

Fact 3.1. Let Pn and Cm be respectively a path of order n ≥ 2 and a cycle of order m ≥ 3. Then,

χ′(Pn) =

{
1 if n = 2,
2 otherwise, χ′(Cm) =

{
2 if m is even,
3 otherwise.

Proposition 3.1. Let Pn be a path of order n ≥ 3. Then η(P([Pn]2)) = 2 if n ≥ 5 and η(P([Pn]2)) = 1 otherwise.

Proof. Edges of P([Pn]2) form two independent paths of order n/2 if n is even (and of orders dn/2e and bn/2c if n is odd)
colorable with the same colors. Thus η(P([Pn]2)) = max

{
χ′
(
Pdn

2 e
)
, χ′
(
Pbn

2 c
)}

and Fact 3.1 gives the result.
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Proposition 3.2. Let Cm be a cycle of order m ≥ 4. Then

η(P([Cm]2)) =

 1 if m = 4,
2 if m > 4 and m, m2 are even,
3 otherwise.

Proof. If m = 4, then edges of P([Cm]2) form two independent paths P2 colorable with the same unique color. Consider
an even m > 4. Edges of P([Cm]2) form two independent cycles of order m

2 . Thus, by Fact 3.1, we need 2 colors if m
2 is even

and 3 colors otherwise. Moreover, if m is odd, the edges of P([Cm]2) form a unique cycle of order m which needs 3 colors
by Fact 3.1.

Then we evaluate the number of colors needed to properly color each subset of E([Pn�Cm]2) and we start with the
following property.

Property 3.1. Let Pn and Cm be respectively a path of order n ≥ 2 and a cycle of order m ≥ 3. Then

η(E ([Pn�Cm]2)) ≤
{
χ′(Pn) + χ′(Cm) if m is even, (a)
χ′(Pn) + χ′(Cm)− 1 otherwise, (b)

and

η(P([Pn�Cm]2)) ≤


η(P([Cm]2)) if n = 2, (c)
η(P([Pn]2)) if m = 3, (d)
η(P([Pn]2)) + η(P([Cm]2)) if m and m

2 are even, (e)
η(P([Pn]2)) + η(P([Cm]2))− 1 otherwise. (f)

Proof. First, note that if n = 2 (case (c)), then P([Pn]2) = ∅ and η(P([Pn�Cm]2)) = η(P([Cm]2)). By the same way, if
m = 3 (case (d)), then P([Cm]2) = ∅ and η(P([Pn�Cm]2)) = η(P([Pn]2)).

Then, we see in [Pn�Cm]2 that all the copies of Pn (respectively, Cm) are distinct and can be colored with the same
coloring. Moreover, copies P i

n and Cj
m share some vertices and need different colorings, with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Thus edges of E ([Pn�Cm]2) are colorable with at most χ′(Pn) + χ′(Cm) colors (case (a)). The same reasoning is done for
the copies of P([Pn]2) and P([Cm]2). Thus, power edges of [Pn�Cm]2 are colorable with at most η(P([Pn]2)) +η(P([Cm]2))

colors (case (e)).
Considerm is odd (respectively,m or m

2 is odd). Color each copy of Cm (respectively, P([Cm]2)) with the same 3-coloring.
Note that vertices of a copy P i

n (respectively, P([P i
n]2)) have only two colors on incident colored edges from the copies of

Cm (respectively, P([Cm]2)). Then each copy P i
n (respectively, P([P i

n]2)) can be colored with one already used color and
χ′(Pn) − 1 new colors (respectively, η(P([Pn]2)) − 1 new colors). Thus η(E ([Pn�Cm]2)) ≤ χ′(Pn) + χ′(Cm) − 1 (case (b))
(respectively, η(P([Pn�Cm]2)) ≤ η(P([Pn]2)) + η(P([Cm]2))− 1 (case (f ))).

We can determine the number of colors needed for the edge set E ([Pn�Cm]2) and for the power edges of [Pn�Cm]2.

Lemma 3.1. Let Pn and Cm be respectively a path of order n ≥ 2 and a cycle of order m ≥ 3. Then

η(E ([Pn�Cm]2)) ≤
{

3 if n = 2,
4 otherwise.

Proof. Results are deduced from Property 3.1 and Fact 3.1.

Lemma 3.2. Let Pn and Cm be respectively a path of order n ≥ 2 and a cycle of order m ≥ 3. Then

η(P([Pn�Cm]2)) ≤



0 if n = 2 and m = 3,
η(P([Cm]2)) if n = 2, and m 6= 3,
η(P([Pn]2)) if n 6= 2, and m = 3,
2 if 3 ≤ n ≤ 4 and m = 4,
3 if 3 ≤ n ≤ 4 and m > 4 or n ≥ 5 and m = 4,
4 otherwise.

Proof. Results are deduced from Property 3.1 and Propositions 3.1 and 3.2.

Now, we examine the cross edges of [Pn�Cm]2.

Lemma 3.3. Let Pn and Cm be respectively a path of order n ≥ 3 and a cycle of order m ≥ 3. Then η(C ([Pn�Cm]2)) ≤ 4.

Proof. Note that the cross edges between two consecutive copies Cj
m and Cj+1

m form either two independent cycles of order
m ifm is even, or a cycle of order 2m ifm is odd. Each of these graphs is colorable with two colors by Fact 3.1 (note that ifm
is even, the two cycles are colored with the same two colors). Moreover, the cross edges between Cj

m and Cj+1
m and between

Cj+1
m and Cj+2

m have common vertices and need different colorings. Thus we color cross edges between Cj
m and Cj+1

m , for
1 ≤ j ≤ n − 1, with two colors when j is odd and with two other colors when j is even. Cross edges are then colored with
at most four colors.
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Corollary 3.1. Let P2 and Cm be respectively a path of order 2 and a cycle of order m ≥ 3. Then η(C ([P2�Cm]2)) ≤ 2.

Proof. Since only two copies ofCm exist, we deduce from Lemma 3.3 that only two colors are sufficient to color C ([P2�Cm]2).

Finally, we evaluate the chromatic index of the square of cylindrical grids. First, note that since for any graph G,
χ′(G) ≥ ∆(G), then for any cylindrical grid G ≡ Pn�Cm (where n ≥ 2 and m ≥ 3), Lemmas 3.1, 3.2, 3.3, and Corollary 3.1
give the following inequality (where η(E([G]2)) = η(E ([G]2)) + η(P([G]2)) + η(C ([G]2))),

∆([G]2) ≤ χ′([G]2) ≤ η(E([G]2)). (1)

Theorem 3.1. Let Pn and Cm be respectively a path of order n ≥ 2 and a cycle of order m ≥ 3. Then

χ′([Pn�Cm]2) =



5 if n = 2 and m = 3, (a)
6 if n = 2 and m = 4, (b)
7 if n = 2 and m ≥ 5, (c)
8 if n = m = 3 (d)
9 if n = 3 and m = 4, or n = 4 and m = 3, (e)
10 if n = 3 and m ≥ 5, or n = m = 4, or n ≥ 5 and m = 3, (f)
11 if n = 4 and m ≥ 5, or n ≥ 5 and m = 4, (g)
12 otherwise. (h)

Proof. The results are mainly deduced from inequality (1) using the maximum degree of the graph and the preliminary
lemmas. However, for particular cases, we propose specific colorings to prove the upper bounds.

If n = 2 and m = 3 (case (a)), then [Pn�Cm]2 ≡ K6, the complete graph of order 6 and it is known that χ′(K6) = 5.
For cases (b), (g), and (h), we have respectively ∆([P2�C4]2) = 6, ∆([Pn�Cm]2) = 11 and ∆([Pn�Cm]2) = 12. Moreover,

Lemmas 3.1, 3.2, 3.3, and Corollary 3.1 give respectively η(E([P2�C4]2)) ≤ 3 + 1 + 2 = 6, η(E([Pn�Cm]2)) ≤ 4 + 3 + 4 = 11

and η(E([Pn�Cm]2)) ≤ 4 + 4 + 4 = 12. Therefore, by inequality (1), the results hold.
Case (c). First, note that ∆([P2�Cm]2) = 7 form ≥ 5. We propose a coloring c of the graph to show that η(E([Pn�Cm]2)) ≤

7. We start by coloring the edges E ([Pn�Cm]2) and P([Pn�Cm]2). We use the same coloring on the two copies C1
m and

C2
m. If m is even, color each copy Ci

m with the two colors {1, 2} and by Lemma 3.2, edges of P([Ci
m]2) need three colors to

be properly colored, called {3, 4, 5}. If m is odd, then for each copy Ci
m, color the induced subpath Pm = {x1, x2, . . . , xm}

with colors {1, 2}, and color the edge x1xm with the color 3. Note that edges of P([Ci
m]2) form an odd cycle of order m.

Color edges x1xm−1 and xm−2xm with color 5, and edge x2xm with color 4, thus all incident edges to vertices x1 (respec-
tively, xm) have different colors. Then, for any 1 ≤ i ≤ m − 3, put c(xixi+2) = 4 if i mod 4 = {0, 1} and c(xixi+2) = 3

if i mod 4 = {2, 3}. Thus, P([Ci
m]2) is properly colored and no conflict is introduced with the coloring of E ([Pn�Cm]2).

Figure 3.1 illustrates the colorings of [Cm]2. In both cases, note that for the copies of P2 each edge xi,1xi,2, with 1 ≤ i ≤ m,
has incident edges from copies of Cm colored with only four different colors (the same colors for each endvertex since the
coloring is the same for every copy Ci

m). Thus each edge xi,1xi,2 can be properly colored with an already used color and
edges E ([Pn�Cm]2) ∪P([Pn�Cm]2) are colored with five colors. Since Corollary 3.1 shows that two colors are sufficient to
color the cross edges, then η(E([Pn�Cm]2)) ≤ 7 and the result is given by inequality (1).

Case (d). Figure 3.2 proposes a proper edge 8-coloring for the graph [P3�C3]2. Moreover, since ∆([P3�C3]2) = 8 in-
equality (1) gives the result.

Case (e). If n = 4 and m = 3, then ∆([P4�C3]2) = 9. Since Lemmas 3.1, 3.2 and 3.3 give η(E([Pn�Cm]2)) ≤ 9, we deduce
the result from inequality (1). Consider n = 3 and m = 4. Figure 3.3 gives a proper edge 9-coloring for the graph [P3�C4]2.
Moreover, since ∆([P3�C4]2) = 9, we deduce the result from inequality (1) too.

Case (f). For every subcase note that ∆([Pn�Cm]2) = 10. If n = m = 4 or n ≥ 5 and m = 3, then Lemmas 3.1, 3.2, and
3.3 give η(E([Pn�Cm]2)) ≤ 10, and by inequality (1) the results hold. Consider n = 3 andm ≥ 5. We propose a construction
to color the squared grid [Pn�Cm]2 with ten colors:

• Cross edges C ([P3�Cm]2). By Lemma 3.3, four colors are needed to color cross edges (two colors for edges between
copies C1

m and C2
m, denoted by {7, 8}, and two colors for edges between copies C2

m and C3
m, denoted by {9, 10}).

• Edges E ([Ci
m]2) and power edges P([Ci

m]2), 1 ≤ i ≤ 3. We adapt the coloring c described in case (c). For edges
E ([Ci

m]2), use the same coloring as c with colors {1, 2} or {1, 2, 3} according to the parity of m. For edges P([Ci
m]2) we

distinguish two subcases. Edges P([C2
m]2) are directly colored as in c with colors {3, 4, 5}. For power edges P([C1

m]2)

(respectively, P([C3
m]2)), use the coloring c but replace the set of colors {3, 4, 5} by the set {9, 10, 5} (respectively,

{7, 8, 5}). Note that this partial coloring is proper since copy [C1
m]2 (respectively, [C3

m]2) does not share vertices with
copies [C2

m]2 and [C3
m]2 (respectively, [C1

m]2 and [C2
m]2) and the colors used for cross edges can be reused.
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• Edges E ([P j
3 ]2), 1 ≤ j ≤ m. We start by coloring every edge xj,1xj,2. Note that its endvertices have incident edges

colored with at most four different colors in {1, 2, . . . , 5} (each of them with two neighbors in E ([Ci
3]2) with the same

colors and two neighbors in P([Ci
3]2) with the same colors or colors with a number larger than 5, 1 ≤ i ≤ 2). Thus

these edges can be properly colored without introducing a new color. Then we color the edges xj,2xj,3 with the same
new color, denoted by 6 (since they are independent). Thus, the partial coloring remains proper.

• Power edges P([P j
3 ]2), 1 ≤ j ≤ m. These edges connect vertices of copies [C1

m]2 and [C3
m]2. Vertices of these copies

have degree 8 and every edge xj,1xj,3 admits 15 incident edges. Since colorings of E ([Ci
m]2) are the same, and since

the four colors of cross edges are reused in the colorings of P([C1
m]2) and P([C1

m]2), every edge xj,1xj,3 is adjacent to
at most 9 colors (4 from cross edges, 4 from E ([Pn�Cm]2) and at most one more from power edges). Since the partial
coloring uses 10 colors, each edge xj,1xj,3 can be properly colored without introducing new colors.

Thus the coloring of the graph is proper with ten colors. Therefore η(E([Pn�Cm]2)) ≤ 10 and the result holds. Figure 3.4
presents an example of the above proper edge 10-coloring for [P3�Cm]2 when m is odd.

Corollary 3.2. The squared cylindrical grid [Pn�Cm]2, with n ≥ 2 and m ≥ 3, is a class one graph.

Proof. Theorem 3.1 shows χ′([Pn�Cm]2) = ∆([Pn�Cm]2).
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Figure 3.1: An edge coloring of [Ci
m]2 according to the parity of m, with 1 ≤ i ≤ 2 (Theorem 3.1 case (c)).
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Figure 3.2: A proper edge 8-coloring of [P3�C3]2.
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Figure 3.3: A proper edge 9-coloring of [P3�C4]2.
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Figure 3.4: A proper edge 10-coloring of [P3�Cm]2, with m ≥ 5 odd.

4. The [r, s, t]-coloring of [Pn�Cm]2

From Theorem 1.1 we see that upper and lower bounds are based on the chromatic number and chromatic index of the
considered graph. Thus we can deduce the following corollary.

Corollary 4.1. Let Pn and Cm be respectively a path and a cycle of orders n ≥ m ≥ 3. For the cylindrical grid G ≡ Pn�Cm,
we have

max{r(χ([G]2)− 1) + 1, s(χ′([G]2)− 1) + 1, t+ 1} ≤ χr,s,t([G]2) ≤ 4r + 11s+ t+ 1.

Proof. Follows from Theorems 1.1, 1.2 and 3.1.

These bounds seem large, but next, we show that under conditions on r, s, and t, the lower and the upper bounds are
reachable. We first prove that the upper bound is reached for r = s = t = 1.
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Theorem 4.1. Let Pn and Cm be respectively a path and a cycle of orders n ≥ 7 andm ≥ 7 respectively, wherem 6≡ 0(mod 5).
Then

χ1,1,1([Pn�Cm]2) = 4r + 11s+ t+ 1 = 17.

Proof. Let k = 4r + 11s + t + 1 = 17. Corollary 4.1 gives χ1,1,1([Pn�Cm]2) ≤ k. Suppose there exists a [r, s, t]-coloring of
[Pn�Cm]2 with k′ < k colors. We can see that the graph G′ depicted in Figure 4.1 is an induced subgraph of [Pn�Cm]2.
Without loss of generality (w.l.o.g.), choose the subgraph among copies P 3

n , P
4
n , . . . , P

m−2
n and C3

m, C
4
m, . . . , C

n−2
m . Thus every

a

g

fed

c

b

Figure 4.1: A subgraph G′ of [Pn�Cm]2 (dashed edges are added by the power 2).

vertices of G′ has a degree 12 in [Pn�Cm]2. Theorem 3.1 (case (h)) gives an edge coloring with 12 colors for [Pn�Cm]2 and
every vertex of G′ is adjacent to the twelve colors. Since t = 1, these colors cannot be used for a proper coloring of the
vertices of G′. Thus these vertices are colored with k′ − 12 < 5 colors. A proper coloring of them implies c(a) 6= c(b),
c(b) 6= c(c) and c(a) 6= c(c) (w.l.o.g., assume that a, b, c are colored respectively with colors 1, 2, 3). Since e is adjacent to
a, b and c, c(e) = 4. To have a proper coloring we need to have c(d) = c(c) = 3 and c(f) = c(a) = 1. Thus, vertex g is
adjacent to four colors and needs a new color, which contradicts the number of colors and χ1,1,1([Pn�Cm]2) ≥ k. Therefore
χ1,1,1([Pn�Cm]2) = 17.

Next, we present some cases for which the lowest value of the [r, s, t]-chromatic number is reached.

Theorem 4.2. Let Pn and Cm be respectively a path and a cycle of orders n ≥ m ≥ 5, where m 6≡ 0(mod 5). If r ≥ 2s + 2t

and s ≤ 2t, then
χr,s,t([Pn�Cm]2) = r(χ([Pn�Cm]2)− 1) + 1 = 4r + 1.

Proof. Note that r ≥ 2t+2s ≥ 3s. Thus we have 4r ≥ 12s and by Corollary 4.1 and Theorem 1.2 we have χr,s,t([Pn�Cm]2) ≥
max{r(χ([Pn�Cm]2)− 1) + 1, 11s+ 1, t+ 1} = r(χ([Pn�Cm]2)− 1) + 1 = 4r + 1.

We define the two sets of colors Sv = {0, r, 2r, 3r, 4r} for the vertices and Se =
⋃3

i=0 S
i
e for the edges where Si

e = {ir +

t, ir+ t+ s, ir+ t+ 2s}. We have |Sv| = 5 and |Se| = 12. Theorems 1.2 and 3.1 show that [Pn�Cm]2 needs at least five colors
on its vertices and twelve colors on its edges. Thus these theorems give a coloring of the graph with the colors of Sv and
Se respectively. We need to verify that these colors respect the r-, s- and t-conditions of a [r, s, t]-coloring. Figure 4.2 shows
the sets of colors and the color distances between these colors to check the conditions.

0 r 2r 3r 4rS0
e S1

e S2
e S3

et β t β t β t β

r r r r

α α α

Figure 4.2: Set of colors used in Sv and Se (Theorem 4.2) and the color distances between them on dashed lines (note that
α = r − 2s ≥ 2t ≥ s and β = r − 2s− t ≥ t).

In Sv the r-condition is clearly fulfilled. Moreover, in every Si
e, the colors fulfill the s-condition. And since the color

difference between two consecutive sets Si−1
e and Si

e is at least α = [ir + t] − [(i − 1)r + t + 2s] = r − 2s, for any 1 ≤
i ≤ 3, we have α = r − 2s ≥ 2t ≥ s and the s-condition is fulfilled between the sets Si

e (and so in Se). Finally, since
β = [ir] − [(i − 1)r + t + 2s] = r − 2s − t, for any 1 ≤ i ≤ 3, we have β = r − 2s − t ≥ t and the t-condition is also fulfilled
between colors of Sv and Se. Thus the coloring is a [r, s, t]-coloring and we deduce χr,s,t([Pn�Cm]2) ≤ 4r + 1. Therefore
χr,s,t([Pn�Cm]2) = 4r + 1.

Corollary 4.2. Let Pn and Cm be respectively a path and a cycle of orders n ≥ m ≥ 5, where m 6≡ 0(mod 5). If r ≥ 3s and
s ≥ 2t, then χr,s,t([Pn�Cm]2) = 4r + 1.

Proof. The proof is similar to Theorem 4.2. Use the coloring given in Theorem 4.2. Since α = r−2s ≥ s and β = r−2s−t ≥
s − t ≥ t, for any 1 ≤ i ≤ 3, we can see, as in Theorem 4.2, that the r-, s- and t-conditions are fulfilled in the coloring and
χr,s,t([Pn�Cm]2) = 4r + 1.
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Theorem 4.3. Let Pn and Cm be respectively a path and a cycle of orders n ≥ 2 and m ≥ 3, where m 6≡ 0(mod 5). If s ≥ 2t

and s ≥ r, then
χr,s,t([Pn�Cm]2) = (χ′([Pn�Cm]2)− 1)s+ 1.

Proof. Since s ≥ r, we have (χ′([Pn�Cm]2) − 1)s ≥ 4r (by Theorem 1.2). Moreover, since s ≥ 2t then Corollary 4.1 gives
χr,s,t([Pn�Cm]2) ≥ max{4r + 1, (χ′([Pn�Cm]2)− 1)s+ 1, t+ 1} = (χ′([Pn�Cm]2)− 1)s+ 1.

Let k = χ′([Pn�Cm]2)−1. Then we define the two sets of colors Sv = {t, s+t, 2s+t, 3s+t, 4s+t} and Se = {0, s, 2s, . . . , ks}.
Thus |Sv| = 5 and |Se| = k + 1. Theorems 1.2 and 3.1 show that [Pn�Cm]2 needs at least |Sv| colors on its vertices and |Se|
colors on its edges. Thus these theorems give a coloring of the graph with the colors of Sv and Se respectively. We need to
verify that these colors respect the r-, s- and t-conditions of a [r, s, t]-coloring. Figure 4.3 shows the sets of colors and the
color distances between these colors to check the conditions.

Sv

Se

t s+ t 2s+ t 3s+ t 4s+ t

0 s 2s 3s 4s 5s 6s . . . ks

α α α α

t t t t t

β β β β β

s s s s s s

Figure 4.3: Set of colors used in Sv and Se (Theorem 4.3) and the color distances between them on dashed lines (note that
α = s ≥ r and β = s− t ≥ t).

In Se the s-condition is obviously fulfilled. Then for the set Sv, since s ≥ r, the r-condition is fulfilled too. Finally, since
the color difference between colors of Sv and Se is at least β = s− t ≥ t, the t-condition is fulfilled too. Thus the coloring is
a [r, s, t]-coloring and we deduce χr,s,t([Pn�Cm]2) ≤ ks+ 1. Therefore χr,s,t([Pn�Cm]2) = (χ′([Pn�Cm]2)− 1)s+ 1.

5. Conclusion

In this paper, we considered the square of the Cartesian product of a path by a cycle. We presented the chromatic index
of such a graph. In particular, we proved that this class of graphs is of class one according to Vizing’s theorem since its
chromatic index is ∆, the maximum degree of the graph. We also presented the bounds for the [r, s, t]-chromatic number
of squared cylindrical grids and proved they are tight. We proposed values of r, s, and t for which the exact value of the
[r, s, t]-chromatic number is given.
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