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1Department of Mathematics, Kuwait University, Safat, Kuwait
2Department of Mathematics, TOBB Economics and Technology University, Ankara, Çankaya, Turkey
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Abstract

As a sequential analogue of binomial coefficients, we consider general Fibonomial coefficients with indices in arithmetic
progressions. We give a recurrence relation and a generating matrix for the products of these coefficients. We find explicitly
the spectrum of the generating matrix by constructing new relationships between the coefficients and characteristic polyno-
mials of general Pascal matrices. We derive various identities for the general Fibonomial coefficients. Finally, we present a
matrix approach to derive a formula for sums of these coefficients.
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1. Introduction

For n > 0 and a nonzero integer A, the general Fibonacci and Lucas sequences are defined by Un+1 = AUn + Un−1 and
Vn+1 = AVn + Vn−1, where U0 = 0, U1 = 1 and V0 = 2, V1 = A, respectively. When A = 1, the general Fibonacci and Lucas
sequences {Un, Vn} are reduced to the usual Fibonacci and Lucas sequences {Fn, Ln} . The general Fibonomial coefficients
(GFCs) are formed by terms of the sequence {Un} as follows for n ≥ m ≥ 1 and r ≥ 1{

n

m

}
U ;r

=
UrU2r . . . Urn

UrU2r . . . Ur(n−m) · UrU2r . . . Urm
,

with
{
n
n

}
U ;r

=
{
n
0

}
U ;r

= 1 and 0 otherwise. When r = 1, the general Fibonomial coefficients
{
n
m

}
U,1

are reduced to the
general Fibonacci coefficients denoted by

{
n
m

}
U

. When also A = 1, the general Fibonomial coefficients
{
n
m

}
U

are reduced to
the Fibonacci coefficients

{
n
m

}
F
. The Fibonomial coefficients, which are sequential variants of binomial coefficients, have

attracted a lot of attention with their interesting properties and connections with other known mathematical structures;
for more details, see [4,6,8,11,13–16,18,19].

For n > 0 and a nonzero integer A, the n× n right-adjusted general Pascal matrix Pn (A) is a matrix whose (i, j) entry
is of the form

(Pn (A))ij =

(
j − 1

j + i− n− 1

)
Ai+j−n−1,

which is reduced to the right-adjusted Pascal matrix denoted by Pn for A = 1.

There are interesting relationships between the general Pascal matrix and the general Fibonomial coefficients; for
details, see [1,2,12,17].

Denote the roots of the characteristic equation x2 −Ax− 1 = 0 of {Un} by α and β. From [12], we have that for n, r ≥ 1,

Urn = VrUr(n−1) + (−1)r+1
Ur(n−2), (1)

Vrn = VrVr(n−1) + (−1)r+1
Vr(n−2).

The n× n right-adjusted Pascal matrix Pn is defined as

Pn =

[(
i− 1

n− j

)]
1≤i,j≤n

.
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By considering the general Lucas sequence {Vm} , the authors of [12] defined the n × n general right-adjusted Pascal
matrix Pn (Vr) as

Pn (Vr) =

[
(−1)(r+1)(n−j)

V i+j−n−1r

(
i− 1

n− j

)]
1≤i,j≤n

and then show that for all m > 0,

tr (Pmn (Vr)) =
Urnm
Ur

.

Observe that Pn (V1) = Pn (A) . For r = 1, V1 = A and when A = 1, the general Lucas sequence {Vn} is reduced to the Lucas
sequence {Ln}, and so the general Pascal matrix Pn (Vr) is reduced to the Pascal matrix Pn. The authors of [12] explicitly
derived that all the eigenvalues of Pn+1 (Vr) are

αrn, αr(n−1)βr, . . . , αrβr(n−1), βrn (2)

and the characteristic polynomial of Pn+1 (Vr) is

Pn(Vr;x) =
n−1∏
j=0

(
x− αjrβ(n−j−1)r

)
=

n∑
t=0

(−1)r(
t
2)+t

{
n

t

}
U,r

xn−t, (3)

where
{
n
k

}
U ;r

is the general Fibonomial coefficient. For r = 1, V1 = A and so we choose A = 1, then Pn(V1;x) is reduced to
the characteristic polynomial of the Pascal matrix denoted by Pn(x).

Matrix methods are important and very convenient tools to solve problems stemming from number theory (see [9,10]).
Our purpose in this paper is to derive generating matrices for the products of two general Fibonomial coefficients

{
n
m

}
U,r

and derive recurrence relations for them. Further, by using matrix methods, we obtain new identities for them and explicit
formulas for their sums.

2. GFCs with indices in arithmetic progress

For 1 ≤ m ≤ k + 1, we derive a recursion and generating matrix for products of two general Fibonomial coefficients of the
form

an,m := s (m)

{
n+ k

k −m+ 1

}
U,r

×
{
n+m− 2

m− 1

}
U,r

,

where the sign function is defined as

s (m) =

{
(−1)(

m−1
2 ) if r is odd,

(−1)m+1 if r is even,

and
{
n
m

}
U,r

stands for the general Fibonomial coefficients. Consider single general Fibonomial coefficients of the form

a1,m = s (m)

{
k + 1

m

}
U,r

by choosing n = 1 in the definition of an,m.
We recall the identity Fn+m = Fm−1Fn + FmFn+1 (see pp. 176 of [20]). For the sequence {Un} and k,m, n ∈ Z, and

positive integer r, an analogue of this identity with indices in an arithmetic progression is

UrkUr(n+m) = UrmUr(n+k) + (−1)rm UrnUr(k−m). (4)

Now, we give the following result.

Lemma 2.1. For n > 0, 1 ≤ i ≤ k and for odd r,

a1,ian,1 + (−1)i−1 an,i+1 = an+1,i,

and for even r,
a1,ian,1 − an,i+1 = an+1,i,

where an,i is defined as before.

Proof. We consider the case when r is even. If we simplify the identity a1,ian,1 − an,i+1 = an+1,i, we need to prove that

Ur(k+1)Ur(n+i) + UrnUr(k−i+1) = UriUr(n+k+1).

By taking k → k+1 in (4), the last equality can be obtained. For the case when r is odd, the proof can be found in [11].
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For k, r ≥ 1, define the companion matrix G and the matrix Hn of order-(k + 1) as follows:

G =



a1,1 a1,2 a1,3 . . . a1,k+1

1 0 0 · · · 0

0 1 0
. . . 0

... . . . . . . . . . ...
0 · · · 0 1 0

 and Hn =


an,1 an,2 . . . an,k+1

an−1,1 an−1,2 . . . an−1,k+1

...
... . . . ...

an−k,1 an−k,2 . . . an−k,k+1

 . (5)

The matrix G is referred to as the general Fibonomial matrix since its powers generate the products of two general
Fibonomial coefficients. Now, we give our first main result.

Theorem 2.1. For n > 0, Hn = Gn.

Proof. By the definition of Hn and the general Fibonomial coefficients, the proof is followed for n = 1. Suppose that the
equality holds for n ≥ 1. Now, we show that the equation holds for n + 1. Thus, we write Gn+1 = G · Gn = G · Hn. From
Lemma 2.1 and the property of matrix multiplication, we get Gn+1 = G ·Hn = Hn+1.

As special cases of Theorem 2.1, we note the following special consequences.

• When k = 1, we obtain the following fact

G =

[
Vr (−1)r+1

1 0

]
and Hn = Gn =

[
Ur(n+1) Urn
Urn Ur(n−1)

]
.

• If we take A = 1 and r = 1, we get the well-known fact[
1 1
1 0

]n
=

[
Fn+1 Fn
Fn Fn−1

]
.

• When A = 1, r = 3, and k = 2, we write

a1,m = (−1)(
m−1

2 )
{
3

m

}
U,3

; 1 ≤ m ≤ 3

and so

G =


F9

F3

F9

F3
−1

1 0 0

0 1 0

 and Hn =


F3(n+1)F3(n+2)

F3F6

F3nF3(n+2)

F3F3
−F3nF3(n+1)

F3F6

F3nF3(n+1)

F3F6

F3(n−1)F3(n+1)

F3F3
−F3(n−1)F3n

F3F6

F3(n−1)F3n

F3F6

F3(n−2)F3n

F3F3
−F3(n−2)F3(n−1)

F3F6

 .
Since G is a companion matrix, we derive a linear recursion for the products of general Fibonomial coefficients by the

next result.

Theorem 2.2. For n, k > 0, the general Fibonomial coefficients satisfy the recursion{
n+ k + 1

k

}
U,r

=

k+1∑
t=1

s (t)

{
k + 1

t

}
U,r

{
n+ k + 1− t

k

}
U,r

,

where the sign function is defined as before.

Proof. By equating (1, 1) entries in the equation Hn+1 = H1Hn, we obtain an+1,1 =
∑k+1
t=1 a1,tan+1−t,1. By using the

definition of an,i, the proof is obtained after some simplifications.

Considering the general Fibonomial matrix G, we obtain the following result.

Corollary 2.1. For n, r, p > 0, the following identities hold:

(i)
{
m+ n+ k + 1

k + 1− j

}
U,r

{
m+ n+ j − 1

j − 1

}
U,r

=

k∑
t=1

s (t)

{
n+ k + 1

k + 1− t

}
U,r

{
n+ t− 1

t− 1

}
U,r

×
{
m+ k + 1− t
k − j + 1

}
U,r

{
m− t+ j − 1

j − 1

}
U,r

,

(ii) s (i)

{
n+ 1 + k

n+ i

}
U,r

{
n+ i− 1

n

}
U,r

= s (i) s (1)

{
k + 1

i

}
U,r

{
n+ k

k

}
U,r

+ s (i+ 1)

{
n+ k

k − i

}
U,r

{
n+ i− 1

i

}
U,r

,

where the sign function s (t) is defined as before.

Proof. From the matrix multiplication, we write the equalities Hn+1 = HnH1 and Hn+m = HnHm. If we consider these
equalities with their corresponding entries, we derive am+n+1−i,j =

∑k
t=1 an+1−i,tam+1−t,j and an+1,i = a1,ian,1+an,i+1. By

considering the definition of an,i and H = [hij ] , we obtain the claimed results.
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3. The spectrum of the matrix G

We explicitly find the spectrum of matrix G. Here G is a companion matrix and we recall the fact that for the companion
matrix

C =


c1 c2 c3 · · · ck
1 0 0 · · · 0
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0

 ,
it is known that the (k + 1)th degree characteristic polynomial of C is

C (x) = xk+1 − c1xk − c2xk−1 − . . .− ck−1x− ck.

Denote the characteristic polynomial of the general Fibonomial matrix G of order-k by G (x) . By considering the fact
just above and recalling that the first row entries of the companion matrix G are [G]1,m = a1,m with

a1,m = s (m)

{
k + 1

m

}
U,r

for 1 ≤ m ≤ k, we have the next result without proof.

Corollary 3.1. For n > 0,

G (x) =
k+1∑
t=0

s (t)

{
k + 1

t

}
U,r

xk+1−t,

where the function s (t) is defined as before.

By the definition of the sign function, for odd r,

G (x) =
k+1∑
t=0

{
k + 1

t

}
U,r

(−1)(
t+1
2 ) xk+1−t

and for even r > 0,

G (x) =
k+1∑
t=0

{
k + 1

t

}
U,r

(−1)t xk+1−t.

In [3,5–7], it was shown that the kth power of generalized Fibonacci numbers {Unr} with indices in arithmetic progres-
sions satisfies the following polynomial for r > 0:

Cn (x) =
k+1∑
t=0

{
k + 1

t

}
U,r

(−1)(
t+1
2 ) xk+1−t;

that is, we have that
k+1∑
t=0

{
k + 1

t

}
U,r

(−1)(
t+1
2 ) Ukr(n+k+1−t) = 0.

The authors of [1,3] showed that the characteristic polynomialP (x) of the right-adjusted Pascal matrix Pn (V1) = Pn (A)

for A = 1 is also equal to the polynomial C (x) and so C (x) = G (x) = P (x) . Thus, we collect these results and derive the
following remark:

• the characteristic polynomial P (x) of the order-k general right-adjusted Pascal matrix Pk (Vr) for A = 1,

• the characteristic polynomial G (x) of the order-k general Fibonomial matrix for odd r, and

• the auxiliary polynomial satisfied by the kth power of generalized Fibonacci numbers {Unr}

are the same.
From [3], we have the next result.

Corollary 3.2. The roots of the polynomial P (x) of the general right-adjusted Pascal matrix P (A) of order-k are given by{
(−1)j αk−1−2j , (−1)j βk−1−2j

}
0≤j≤t−1

if k = 2t,{
(−1)t , (−1)j αk−1−2j , (−1)j βk−1−2j

}
0≤j≤t−1

if k = 2t+ 1,

where α, β =
(
A±
√
A2 + 4

)
/2.

4



A. Alazemi and E. Kılıç / Discrete Math. Lett. 15 (2025) 1–8 5

By considering the polynomial equality G (x) = P (x) and Corollary 3.2, we have the eigenvalues of the Fibonomial
matrix G as the roots of P (x).

Corollary 3.3. The eigenvalues of the Fibonomial matrix G of order-k are given by{
(−1)jr αr(k−1−2j), (−1)jr βr(k−1−2j)

}
0≤j≤t−1

if k = 2t,{
(−1)tr , (−1)jr αr(k−1−2j), (−1)jr βr(k−1−2j)

}
0≤j≤t−1

if k = 2t+ 1,

where α, β =
(
A±
√
A2 + 4

)
/2.

For example, for k = 3 and r = 2, we consider the general Fibonomial matrix G of order 4. Thus,

G =


U8

U2
−U6U8

U2U4

U8

U2
−1

1 0 0 0
0 1 0 0
0 0 1 0

 and so Hn = Gn,

where Hn = [hij ] with

hij = (−1)j+1

{
n+ 4− i
4− j

}
U,2

{
n− i+ j − 1

j − 1

}
U,2

: 1 ≤ i, j ≤ 4.

The characteristic polynomial of the matrix G is

G (x) =
4∑
t=0

(−1)t
{
4

t

}
U,2

x4−t

and its roots are α8, α4, 1, β4, β8 where α, β =
(
A±
√
A2 + 4

)
/2.

Corollary 3.4. Denote the eigenvalues of the Fibonomial matrix G of order-k by µi for 1 ≤ i ≤ k. Then
k∏
i=1

(x− µi) =
k∑
t=0

s (t)

{
k

t

}
U,r

xk−t.

In [2], the authors showed that tr (Pk (V1)) = Ukn

Un
, where Pn (A) is the general Pascal matrix. Generalizing the result

of [2], the authors of [12] proved that
tr (Pnk (V1)) =

Urkn
Uk

.

Since the matrices Hn and Pnk (Vr) of order-k have the same eigenvalues, we obtain

tr (Hn) =
Urkn
Ur

.

Since all eigenvalues of Hn are determined, we easily get the next result.

Theorem 3.1. For n > 0,

tr (Hn) =

bk−1/2c∑
i=0

(−1)inr V(k−2i)nr +
1

2

(
1 + (−1)k

)
.

4. Diagonalization of G and the Binet formula

In this section, we diagonalize the general Fibonomial matrix G and then derive the Binet formula for the general Fibono-
mial coefficients

{
n
k

}
U,r

. By the definitions, since the eigenvalues µ1, µ2, . . . , µk of G of order-k are distinct from each other,
the matrix G can be diagonalized.

Define order-k Vandermonde matrix V and order-k diagonal matrix D = diag(µ1, µ2, . . . , µk) as

V =


µk1 µk2 . . . µkk
...

...
...

µ2
1 µ2

2 . . . µ2
k

µ1 µ2 . . . µk
1 1 . . . 1

 and D =


µ1

µ2

. . .
µk

 .

Since µi 6= µj for 1 ≤ i, j ≤ k, detV 6= 0. Let V (i)
j be the matrix of order-k obtained from V T by replacing the jth column of

V by wi where
wi =

[
µn−i+k+1
1 µn−i+k+1

2 . . . µn−i+k+1
k

]T
.

We give the Binet formula for the generalized Fibonomial coefficients.

5
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Theorem 4.1. For n > 0,

an−i+1,j =
det
(
V

(i)
j

)
det (V )

.

Proof. Since all eigenvalues of the matrix G are different from each other, it can be diagonalized. We write V −1GV = D

or GV = V D and so GnV = V Dn. Since V is an invertible matrix and Gn = Hn = [hij ], we write GnV = Hn,kV = V Dn.

Also, we obtain

hi1µ
k
1 + hi2µ

k−1
1 + . . .+ hi,k−2µ

2
1 + hi,kµ1 + hi,k = µn−i+k+1

1

hi1µ
k
2 + hi2µ

k−1
2 + . . .+ hi,k−2µ

2
2 + hi,kµ2 + hi,k = µn−i+k+1

2

...
hi1µ

k
k + hi2µ

k−1
k + . . .+ hi,k−2µ

2
k + hi,kµk + hi,k = µn−i+k+1

k .

Thus, by Cramer’s rule, we have the solution hi,j = det
(
V

(i)
j

)
/ det (V ).

Let V (ei)
j be a k × k matrix obtained from the Vandermonde matrix V by replacing the jth column of V by ei where V

is defined as before and ei is the ith element of the natural basis for Rn and

V
(ei)
j =



µk1 . . . µkj−1 0 µkj+1 . . . µkk

...
...

...
...

...

µk−i+1
1 . . . µk−i+1

j−1 0 µk−i+1
j+1 . . . µk−i+1

k

µk−i1 . . . µk−ij−1 1 µk−ij+1 . . . µk−ik

µk−i−11 . . . µk−i−1j−1 0 µk−i−1j+1 . . . µk−i−1k

...
...

...
...

...
µ1 . . . µj−1 0 µj+1 . . . µk

1 . . . 1 0 1 . . . 1


↓
ei

.

Let q(i)j =
∣∣∣V (ei)
j

∣∣∣ / |V | where the k × k matrices V (ei)
j and V are defined as before.

Theorem 4.2. For 1 ≤ n,m ≤ k, it holds that an,m = q
(m)
t µn+kt , where µ1, µ2, . . . , µk are the eigenvalues of the matrix G.

Proof. Consider the Cramer’s rule solution of the system

µk1 µk2 . . . µkk

...
...

...

µk−i+1
1 µk−i+1

2 . . . µk−i+1
k

µk−i1 µk−i2 . . . µk−ik

µk−i−11 µk−i−12 . . . µk−i−1k

...
...

...
µ1 µ2 . . . µk

1 1 . . . 1





x1

x2

...

...
xj

...
xk−1

xk



=



0

...
0

1

0

...
0

0


︸ ︷︷ ︸

ei

,

then we obtain

q
(i)
j =

∣∣∣V (ei)
j

∣∣∣
|V |

(i = 1, 2, . . . , k) .

Thus, for n, k > 0 and 1 ≤ m ≤ k,

an,m =

k∑
j=1

q
(m)
j µn+kj ,

which completes the proof.
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A. Alazemi and E. Kılıç / Discrete Math. Lett. 15 (2025) 1–8 7

For example, when A = 1, we get α, β =
(
1±
√
5
)
/2 and if we choose k = 2 and r = 3, then

G =


F9

F3

F9

F3
−1

1 0 0

0 1 0

 and Hn =


F3(n+1)F3(n+2)

F3F6

F3nF3(n+2)

F3F3
−F3nF3(n+1)

F3F6

F3nF3(n+1)

F3F6

F3(n−1)F3(n+1)

F3F3
−F3(n−1)F3n

F3F6

F3(n−1)F3n

F3F6

F3(n−2)F3n

F3F3
−F3(n−2)F3(n−1)

F3F6

 .
Thus, by Theorem 4.2, we find equivalent statements for the entries of the general Fibonomial matrix Gn = Hn. Denote
the eigenvalues of the general Fibonomial matrix G, x3 − F9

F3
x2 − F9

F3
x + 1 = 0, by γ1 = α6, γ2 = β6, γ3 = −1. After some

computations, we obtain

q
(1)
1 = 1

(γ1−γ3)(γ1−γ2) , q
(1)
2 = 1

(γ2−γ3)(γ2−γ1) , q
(1)
3 = 1

(γ2−γ3)(γ1−γ3) ,

q
(2)
1 = − γ2+γ3

(γ1−γ2)(γ1−γ3) , q
(2)
2 = γ1+γ3

(γ2−γ3)(γ1−γ2) , q
(2)
3 = − γ1+γ2

(γ2−γ3)(γ1−γ3) ,

q
(3)
1 = γ2γ3

(γ1−γ3)(γ1−γ2) , q
(3)
2 = − γ1γ3

(γ1−γ2)(γ2−γ3) , q
(3)
3 = γ1γ2

(γ2−γ3)(γ1−γ3) .

Therefore, by Theorem 4.2 and some arrangements, we obtain

F3(n+1)F3(n+2) =
F6n+12 + F6n+6 + F6 (−1)n

10
and F3nF3(n+2) =

F6(n+2) − F6n − F12 (−1)n

40
.

5. Sums of Fibonomial coefficients

We formulate the sum of the general Fibonomial coefficients with indices in arithmetic progressions of the form

Sn =
n−1∑
i=0

{
k + i

k

}
U,r

via matrix methods by extending G which is given in (5). Define the extended matrices T and Wn of order-(k + 2) as

T =


1 0 . . . 0
1
0 G
...
0

 and Wn =


1 0 . . . 0
Sn
... Hn

Sn−k+1

 ,

where the sum Sn and the matrices G and Hn are defined as before. By the definition of the matrix Hn = [hi,j ] , we note
that Sn satisfies

Sn =

n−1∑
i=0

{
k + i

k

}
U,r

=

n−1∑
i=0

ai,1,

where ai,1 = hn−i+1,1. Then we have the next result.

Theorem 5.1. For n > 0, it holds that Tn =Wn.

Proof. Because of the fact that Sn+1 = an,1 + Sn and Theorem 2.1, we derive matrix-recurrence relation Wn =Wn−1T. By
the induction method, we write Wn =W1T

n−1. By the definition of Wn, we obtain W1 = T and so Wn = Tn.

From Corollary 3.3, we know that the Fibonomial matrix G has the eigenvalue 1 for both even r and k ≡ 0 (mod 2) .

Expanding the det (µIk+1 − T ) with respect to the first row, we see that the matrix T has also the eigenvalue 1. Thus,
the matrix T has double eigenvalue 1 for even r and k ≡ 0 (mod 2) . For odd r and k 6≡ 0 (mod 2) , we cannot diagonalize
the matrix T as it has a double eigenvalue, or in general, the matrix T does not have a linear independent eigenvector
associated with the double eigenvalue 1. So, we could not derive an explicit formula for the sum Sn.

Define the matrix M of order k + 2 as

M =


1 0 . . . 0
δ
... V
δ


where

δ =

(
1−

k+1∑
i=1

a1,i

)−1
and the Vandermonde matrix V is defined as before.
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It is observed that TM = MD1, where T is as before and D1 = diag (1, µ1, µ2, . . . , µk). By the Vandermonde matrix V,
computing detM with respect to the first row shows detM = detV.

Theorem 5.2. For even r and k > 0 and for n > 0, it holds that

Sn =
an,1 + an,2 + · · ·+ an,k+1 − 1∑k+1

i=1 a1,i − 1
.

Proof. Since M is invertible, it holds that M−1TM = D1; that is, T is similar to D1. Thus, we write TnM = MDn
1 . By

Theorem 5.1, we haveWnM =MDn
1 .By equating the (2, 1)-th elements ofWnM =MDn

1 and doing a matrix multiplication,
we obtain the desired result.
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[10] E. Kılıç, The generalized order-k Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math. 209(2) (2007) 133–145.
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