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Abstract
The first and second general multiplicative Zagreb indices of a simple graph are defined as the product over all pairs of
adjacent vertices a, b of the terms

[
d(a) + d(b)

]α and
[
d(a) d(b)

]α, respectively, where d(a) denotes the degree of the vertex
a, and α is a real number. In this paper, we obtain bounds on these indices for trees with fixed maximum degree, and
characterize the extremal cases.
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1. Introduction

Let G be an undirected simple connected graph whose vertex and edge sets are V (G) and E(G), respectively. For a ∈ V (G),
the open neighborhood of a is the set N(a) = {b ∈ V (G) | ab ∈ E(G)}. The degree of a vertex a in G is the cardinality of
N(a), and will be denoted by d(a) (or, where necessary, by dG(a)). The maximum degree of G is denoted by ∆(G) = ∆. The
distance between the vertices a, b ∈ V (G), d(a, b), is the length of a shortest (a, b)-path in G.

The first Zagreb index [11,14] and the second Zagreb index [6,13] are the oldest members of the nowadays rich family
of vertex-degree-based indices, and are respectively defined as

M1(G) =
∑

ab∈E(G)

[
d(a) + d(b)

]
and M2(G) =

∑
ab∈E(G)

d(a) d(b) .

For comprehensive and transparent information on these indices, we refer the reader to [2,5,12]. Research on these indices
is still intensively ongoing; the papers [16,17,21,24,25] may serve as examples of the latest developments in the theory of
these indices.

Iranmanesh et al. [10,15] defined the multiplicative versions of the Zagreb indices. The first and second multiplicative
Zagreb indices are defined, respectively, as

M1(G) =
∏

ab∈E(G)

[
d(a) + d(b)

]
(1)

and
M2(G) =

∏
ab∈E(G)

d(a) d(b) . (2)

Eventually, these degree-based graph invariants attracted much attention and were studied by several researchers. See,
for example, [34] for extremal problems in the classes of trees, unicyclic graphs, and bicyclic graphs; [9] for the trees with
the first fourteen smallest multiplicative Zagreb indices; and [4] for a study of these indices on graph transformations. For
more details, see [3,7,19,22,23,26,29–33,35].

Recently, Kulli et al. [20] defined the general versions of the multiplicative Zagreb indices as

Mα
1 (G) =

∏
ab∈E(G)

[
d(a) + d(b)

]α (3)

and
Mα

2 (G) =
∏

ab∈E(G)

[
d(a) d(b)

]α
, (4)
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where α is a real number, α 6= 0. We can see thatMα
1 (G) = (M1(G))α andMα

2 (G) = (M2(G))α. Various extremal problems
on the general multiplicative Zagreb indices were examined by both mathematicians and chemists. See, for example, [1]
for their investigation over graphs with a small number of cycles; [27] for a study over trees; and [28] for an investigation
over graphs with a given clique number. For some recent works on general multiplicative Zagreb indices, see [8, 18, 27].
Needless to say, for α = 1, the general multiplicative Zagreb indices (3) and (4) reduce to their ordinary values, Eqs. (1)
and (2). Therefore, the results stated in the subsequent section also directly apply to the ordinary multiplicative Zagreb
indices.

In this paper, we obtain bounds on the first and second general multiplicative Zagreb indices of trees with a fixed
maximum vertex degree and characterize the respective extremal trees.

2. Main results

A rooted tree is a tree together with a special vertex chosen as the root of the tree. A vertex of a tree of degree one is said
to be a leaf. A branching vertex of a tree is any vertex of degree greater than two.

A tree with exactly one branching vertex is called a spider. The branching vertex of a spider T is its center. A leg of a
spider is a path from its center to a leaf. A star is a spider whose all legs have length one. Also a path can be considered
to be a spider with one or two legs.

In this section, T denotes a rooted tree with root a where d(a) = ∆ and N(a) = {a1, a2, . . . , a∆}. For positive integers n
and ∆, let Tn,∆ be the set of all trees with n vertices and maximum degree ∆.

Lemma 2.1. Let T ∈ Tn,∆. Let b be a branching vertex of T with maximum distance to a. If such a vertex does exist, then
there is a tree T ′ ∈ Tn,∆ such thatMα

i (T ′) >Mα
i (T ) when α < 0 andMα

i (T ′) <Mα
i (T ) when α > 0, where i = 1, 2.

Proof. Let b 6= a be a vertex of T with d(b) = β ≥ 3 and let N(b) = {b1, b2, . . . , bβ−1, bβ} where bβ lies on the (a, b)-path of T .
By our assumption, we have d(bi) ∈ {1, 2} for 1 ≤ i ≤ β − 1. We distinguish the following cases.
Case 1. b is adjacent to at least two leaves.
We can assume that b1 and b2 are leaves. Let T ′ = (T − {bb1}) ∪ {b1b2}. Then

Mα
1 (T )

Mα
1 (T ′)

=
(d(b1) + d(b))α(d(b2) + d(b))α

∏β
i=3(d(bi) + d(b))α

(dT ′(b1) + dT ′(b2))α(dT ′(b2) + dT ′(b))α
∏β
i=3(dT ′(bi) + dT ′(b))α

=
(β + 1)α(β + 1)α

∏β
i=3(d(bi) + β)α

3α(β + 1)α
∏β
i=3(d(bi) + β − 1)α

=

(
β + 1

3

)α β∏
i=3

(
d(bi) + β

d(bi) + β − 1

)α
.

Since β ≥ 3, then β+1
3 > 1. Also d(bi)+β

d(bi)+β−1 > 1 for 3 ≤ i ≤ β. Therefore, if α > 0, thenMα
1 (T ) >Mα

1 (T ′) and if α < 0, then
Mα

1 (T ) <Mα
1 (T ′).

Mα
2 (T )

Mα
2 (T ′)

=
(d(b1)d(b))α(d(b2)d(b))α

∏β
i=3(d(bi)d(b))α

(dT ′(b1)dT ′(b2))α(dT ′(b2)dT ′(b))α
∏β
i=3(dT ′(bi)dT ′(b))α

=
βαβα

∏β
i=3(βd(bi))

α

2α(2β − 2)α
∏β
i=3((β − 1)d(bi))α

=
βαβ

4α(β − 1)α(β−1)
=

(
ββ

4(β − 1)β−1

)α
.

If β ≥ 4, then
ββ

4(β − 1)β−1
=
β

4
(

β

β − 1
)β−1 > 1.

Now, let β = 3. Then
ββ

4(β − 1)β−1
=

27

16
> 1.

Therefore, if α > 0, thenMα
2 (T ) >Mα

2 (T ′) and if α < 0, thenMα
2 (T ) <Mα

2 (T ′).
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Case 2. b is adjacent to exactly one leaf.
Assume that b1 is the unique leaf and bc1c2 . . . c` is a path in T for ` ≥ 2 and b2 = c1. Let T ′ = (T − {bb1}) ∪ {b1c`}. Then

Mα
1 (T )

Mα
1 (T ′)

=
(d(b1) + d(b))α(d(c`) + d(c`−1))α

∏β
i=2(d(bi) + d(b))α

(dT ′(b1) + dT ′(c`))α(dT ′(c`) + dT ′(c`−1))α
∏β
i=2(dT ′(bi) + dT ′(b))α

=
(β + 1)α3α

∏β
i=2(d(bi) + β)α

3α4α
∏β
i=2(d(bi) + β − 1)α

=

(
β + 1

4

)α β∏
i=2

(
d(bi) + β

d(bi) + β − 1

)α
.

Since β ≥ 3, then β+1
4 ≥ 1. Also d(bi)+β

d(bi)+β−1 > 1 for 2 ≤ i ≤ β. Therefore, if α > 0, thenMα
1 (T ) >Mα

1 (T ′) and if α < 0, then
Mα

1 (T ) <Mα
1 (T ′).

Mα
2 (T )

Mα
2 (T ′)

=
(d(b1)d(b))α(d(c`)d(c`−1))α

∏β
i=2(d(bi)d(b))α

(dT ′(b1)dT ′(c`))α(dT ′(c`)dT ′(c`−1))α
∏β
i=2(dT ′(bi)dT ′(b))α

=
βα2α

∏β
i=2(βd(bi))

α

2α4α
∏β
i=2((β − 1)d(bi))α

=
βαβ

4α(β − 1)α(β−1)
=

(
ββ

4(β − 1)β−1

)α
.

In the same way as in Case 1, if α > 0, thenMα
2 (T ) >Mα

2 (T ′) and if α < 0, thenMα
2 (T ) <Mα

2 (T ′).
Case 3. All vertices adjacent to b, except bβ , have degree two.
Let bc1c2 . . . ct, bd1d2 . . . d` be two paths in T , such that `, t ≥ 2, b1 = c1 and b2 = d1. Let T ′ be the tree constructed from
T − {c1, c2, . . . , ct} by attaching the path d`c1c2 . . . ct. ThenMα

1 (T )/Mα
1 (T ′) is equal to

(d(b1) + d(b))α(d(b2) + d(b))α(d(d`) + d(d`−1))α
∏β
i=3(d(bi) + d(b))α

(dT ′(b2) + dT ′(b))α(dT ′(b1) + dT ′(d`))α(dT ′(d`) + dT ′(d`−1))α
∏β
i=3(dT ′(bi) + dT ′(b))α

=
(β + 2)α3α(β + 2)α

∏β
i=3(d(bi) + β)α

4α4α(β + 1)α
∏β
i=3(d(bi) + β − 1)α

=

(
3(β + 2)2

16(β + 1)

)α β∏
i=3

(
d(bi) + β

d(bi) + β − 1

)α
.

Since β ≥ 3, then 3(β+2)2

16(β+1) ≥ 1. Also d(bi)+β
d(bi)+β−1 > 1 for 3 ≤ i ≤ β. Therefore, if α > 0, thenMα

1 (T ) >Mα
1 (T ′) and if α < 0,

thenMα
1 (T ) <Mα

1 (T ′).

Mα
2 (T )

Mα
2 (T ′)

=
(d(b1)d(b))α(d(d`)d(d`−1))α

∏β
i=2(d(bi)d(b))α

(dT ′(b1)dT ′(d`))α(dT ′(d`)dT ′(d`−1))α
∏β
i=2(d(bi)d(b))α

=
(2β)α2α

∏β
i=2(βd(bi))

α

4α4α
∏β
i=2((β − 1)d(bi))α

=
βαβ

4α(β − 1)α(β−1)
=

(
ββ

4(β − 1)β−1

)α
.

By the same way in the Case 1, if α > 0, thenMα
2 (T ) >Mα

2 (T ′) and if α < 0, thenMα
2 (T ) <Mα

2 (T ′).

Lemma 2.2. Let T ∈ Tn,∆ be a spider with ∆ ≥ 3, having at least one leg of length one and one leg of length greater than
two. Then there exists a spider T ′ ∈ Tn,∆, such thatMα

1 (T ′) >Mα
1 (T ) when α < 0 andMα

1 (T ′) <Mα
1 (T ) when α > 0.

Proof. Let d(a) = ∆ and N(a) = {a1, a2, . . . , a∆}. Assume that aa1, ac1c2 . . . c`−1c` be two legs, such that ` ≥ 3 and c1 = a2.
Let T ′ be the tree constructed from T − {c`c`−1} by attaching the path c`a1. Then

Mα
1 (T )

Mα
1 (T ′)

=
(d(a1) + d(a))α(d(c`) + d(c`−1))α(d(c`−1) + d(c`−2))α

(dT ′(a1) + dT ′(a))α(dT ′(a1) + dT ′(c`))α(dT ′(c`−1) + dT ′(c`−2))α

=
(∆ + 1)α 3α 4α

(∆ + 2)α 3α 3α
=

(
4(∆ + 1)

3(∆ + 2)

)α
.

Since ∆ ≥ 3, then 4(∆+1)
3(∆+2) > 1. Therefore, if α > 0, thenMα

1 (T ) >Mα
1 (T ′) and if α < 0, thenMα

1 (T ) <Mα
1 (T ′).

Lemma 2.3. Let T ∈ Tn,∆ be a spider. Then

Mα
2 (T ) = ∆∆α 4(n−∆−1)α.

Proof. Let d(a) = ∆ and N(a) = {a1, a2, . . . , a∆}. Also, let d(a1) = . . . = d(ak) = 1 and d(ak+1) = . . . = d(a∆) = 2. Then

Mα
2 (T ) =

∏
xy∈E(G)

[
d(x) d(y)

]α
= ∆kα (2∆)(∆−k)α 2(∆−k)α 4(n−2∆+k−1)α = ∆∆α 4(n−∆−1)α.
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Theorem 2.1. For T ∈ Tn,∆,

Mα
1 (T ) 6

 (3∆ + 6)α∆ 4α(n−2∆−1) if ∆ ≤ n−1
2

(∆ + 1)α(2∆−n+1)(3∆ + 6)α(n−∆−1) if ∆ > n−1
2 ,

when α < 0, and

Mα
1 (T ) >

 (3∆ + 6)α∆ 4α(n−2∆−1) if ∆ ≤ n−1
2

(∆ + 1)α(2∆−n+1)(3∆ + 6)α(n−∆−1) if ∆ > n−1
2 ,

when α > 0. Equality holds if and only if T is a spider whose all legs have length at most two or all legs have length at least
two.

Proof. Let α < 0 (respectively, α > 0) and T1 ∈ Tn,∆ such thatMα
1 (T1) ≤ Mα

1 (T ) (respectively,Mα
1 (T1) ≥ Mα

1 (T )) for all
T ∈ Tn,∆. If ∆ = 2, then T is a path of order n andMα

1 (Pn) = 9α4α(n−3). Let ∆ ≥ 3. By the choice of T1, we conclude from
Lemma 2.1, that T1 is a spider with center a. It follows from Lemma 2.2 and the choice of T1 that all legs of T1 either have
length at most two or have length at least two. First let all legs of T1 have length at least two. Then clearly ∆ ≤ n−1

2 and

Mα
1 (T1) = (3∆ + 6)α∆ 4α(n−2∆−1)

as desired. Now let all legs of T1 have length at most two. Considering the above case, we may assume that T1 has a leg of
length 1. If T1 is a star, then the result is immediate. Assume that T1 is not a star. Then the number of leaves adjacent to
a is 2∆ + 1− n and hence

Mα
1 (T1) = (∆ + 1)α(2∆−n+1)(3∆ + 6)α(n−∆−1) .

This completes the proof.

Theorem 2.2. For T ∈ Tn,∆,
Mα

2 (T ) ≤ ∆∆α 4(n−∆−1)α,

when α < 0, and
Mα

2 (T ) ≥ ∆∆α 4(n−∆−1)α.

when α > 0. Equality holds if and only if T is a spider.

Proof. Let α < 0 (respectively, α > 0) and T1 ∈ Tn,∆ such thatMα
2 (T1) ≤Mα

2 (T ) (respectively,Mα
2 (T1) ≥Mα

2 (T )). By the
choice of T1, we conclude from Lemma 2.1, that T1 is a spider with center a. It follows from Lemma 2.3,

Mα
2 (T1) = ∆∆α 4(n−∆−1)α.

Therefore,Mα
2 (T ) ≤ ∆∆α 4(n−∆−1)α when α < 0, andMα

2 (T ) ≥ ∆∆α 4(n−∆−1)α when α > 0

By Theorem 2.1, we have the next corollary.

Corollary 2.1. Let T be a molecular tree of order n and maximum degree ∆, 3 ≤ ∆ ≤ 4. If ∆ = 3 and n ≥ 7, then

Mα
1 (T ) ≤ 153α 4α(n−7),

when α < 0, and
Mα

1 (T ) ≥ 153α 4α(n−7),

when α > 0. Also, if ∆ = 4 and n ≥ 9, then
Mα

1 (T ) ≤ 184α 4α(n−9),

when α < 0, and
Mα

1 (T ) ≥ 184α 4α(n−9),

when α > 0. Equality holds if and only if T is a spider whose all legs have length at least two.
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By Theorem 2.2, we have the next corollary.

Corollary 2.2. Let T be a molecular tree of order n and maximum degree ∆, 3 ≤ ∆ ≤ 4. If ∆ = 3, then

Mα
2 (T ) ≤ 33α 4(n−3)α,

when α < 0, and
Mα

2 (T ) ≥ 33α 4(n−4)α.

when α > 0. Also, if ∆ = 4, then
Mα

2 (T ) ≤ 4(n−1)α,

when α < 0, and
Mα

2 (T ) ≥ 4(n−1)α,

when α > 0. Equality holds if and only if T is a spider.

The following observation is immediately achieved from the definitions ofMα
1 andMα

2 indices.

Observation 2.1. Let G be a graph and e /∈ E(G). Then Mα
1 (G + e) > Mα

1 (G), Mα
2 (G + e) > Mα

2 (G) when α > 0 and
Mα

1 (G+ e) <Mα
1 (G),Mα

2 (G+ e) <Mα
2 (G) when α < 0.

Applications of Theorems 2.1, 2.2, and Observation 2.1 provide the next result.

Theorem 2.3. If G is a graph of order n with maximum degree ∆, then

Mα
1 (G) 6

 (3∆ + 6)α∆ 4α(n−2∆−1) if ∆ ≤ n−1
2

(∆ + 1)α(2∆−n+1)(3∆ + 6)α(n−∆−1) if ∆ > n−1
2 ,

when α < 0, and

Mα
1 (G) >

 (3∆ + 6)α∆ 4α(n−2∆−1) if ∆ ≤ n−1
2

(∆ + 1)α(2∆−n+1)(3∆ + 6)α(n−∆−1) if ∆ > n−1
2 ,

when α > 0. Equality holds if and only if G is a spider whose all legs have length at most two or all legs have length at least
two.

Theorem 2.4. If G be a graph of order n with maximum degree ∆, then

Mα
2 (G) ≤ ∆∆α 4(n−∆−1)α,

when α < 0, and
Mα

2 (G) ≥ ∆∆α 4(n−∆−1)α,

when α > 0. Equality holds if and only if G is a spider.
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