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Abstract
Consider a family F of k-subsets of an ambient (k2 − k + 1)-set such that no pair of k-subsets in F intersects in exactly one
element. In this article, it is shown that the maximum size of F is

(
k2−k−1

k−2

)
for every k > 1.
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1. Introduction

A large branch of combinatorics grows from the celebrated Erdős–Ko–Rado theorem [7], which states that a family of
pairwise intersecting k-element subsets of an n-element set has size at most

(
n−1
k−1

)
provided that n ≥ 2k.

For our aim, it is convenient to define a Johnson graph J(n, k, t), whose vertices are k-element subsets of an n-element
set and edges connect pairs of vertices with intersection t. An independent set is a vertex subset of a graph such that there
is no edge between its elements. Let α(G) stand for the size of a maximal independent set in a graph G. In this language,
the statement of the Erdős–Ko–Rado theorem is

α(J [n, k, 0]) =

(
n− 1

k − 1

)
for n ≥ 2k. The problem of finding α(J [n, k, t]) is known as Erdős–Sós forbidden intersection problem. The bibliography
on this problem is wide, and the proofs use very different techniques. Let us briefly provide the highlights. Frankl and
Füredi [9] used the so-called ∆-system method to show that

α(J [n, k, t]) =

(
n− t
k − t

)
for n > n0(k) and k ≥ 2t+ 2. Another very general result was obtained by Frankl and Wilson [10] by a rank bound: it gives

α(J [n, k, t]) ≤
(

n

k − t− 1

)
for k > 2t and k − t being a prime power. This result has important applications to discrete geometry (see [13,19]).

Recently, Ellis, Keller, and Lifshitz [6, 15] used the junta-method to determine α(J [n, k, t]) for ε < k/n < 1/2 − ε and
n > n0(t, ε). Kupavskii and Zakharov [16] showed that

α(J [n, k, t]) =

(
n− t− 1

k − t− 1

)
for k > k0, n = dkαe, t =

⌈
kβ
⌉
, where α > 1 and 1/2 > β > 0 satisfy α > 1 + 2β. They use the spread approximation

technique [2].
The problem for t = 1 and n > n0(k) was solved by Frankl [8]. Also, we mention here that α(J [n, 4, 1]) =

(
n−2
2

)
for n ≥ 9

(see [14]). The main result of the present paper is stated as follows.

Theorem 1.1. For every k > 1,

α(J [k2 − k + 1, k, 1]) =

(
k2 − k − 1

k − 2

)
.

Note that for the case where k > k0, Theorem 1.1 follows from the mentioned results of Kupavskii and Zakharov [16]
and Keller and Lifshitz [15].
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2. Tools

Johnson scheme and Bose–Mesner algebra
The facts from this subsection can be found in books [3,11].

An associative scheme is a pair (V,R) consisting of a finite set V and a family of non-empty binary relations R on V ,
and satisfying the following properties:

1. sets R ∈ R form a partition of V 2;

2. the diagonal ∆(V ) of the set V 2 is an element of R;

3. the set R is closed under the interchange of the first and second coordinates in V 2;

4. for arbitrary relations R,S, T ∈ R numbers

|v ∈ V : (u, v) ∈ R, (v, w) ∈ S|

are the same for all (u,w) ∈ T .

The classical Johnson scheme is given by

V =

(
[n]

k

)
; Ri := {(v, u) ∈ V × V : 〈v, u〉 = k − i}, i = 0, . . . k.

The Bose–Mesner algebra of the Johnson scheme is the algebra of
(
n
k

)
×
(
n
k

)
matrices, with entries defined by

A(x, y) := f(|x ∩ y|).

Since this is indeed a commutative algebra and all such matrices are symmetric, these matrices are simultaneously diag-
onalizable. A standard basis of the Bose–Mesner algebra is formed by matrices

Bi(x, y) :=

(
|x \ y|
i

)
, i = 0, . . . , k.

The eigenvalues of Bi are given by
µ
(i)
j = (−1)j

(
k − j
i− j

)(
n− i− j
k − j

)
.

Then the machinery offers to represent any matrix A from the Bose–Mesner algebra as
∑
biBi and get its spectrum as

λj =

k∑
i=0

biµ
(i)
j .

Let I be a subset of
(
[n]
k

)
and χI stand for its characteristic vector. Denote by ci, i = 0, . . . , k the coefficients in the

decomposition of χI with respect to the common eigenspaces of the Bose–Mesner algebra.

Hoffman bound
The following celebrated theorem is widely known as the Hoffman ratio bound [12].

Theorem 2.1. Let A be a pseudo-adjacency matrix of a d-regular N -vertex graph G with non-negative entries. Then

α(G) ≤ N −λmin
d− λmin

, (1)

where α(G) is the independence number of G.

The proof is a one-line collection of several simple observations. Let I be any independent set in G and χI stand for its
characteristic vector. Then

0 = (AχI , χI) =

N∑
i=1

a2iλi ≥ a21d+ (a22 + · · ·+ a2N )λmin =
|I|2

N
d+

(
|I| − |I|

2

N

)
λmin, (2)

where ai are the coefficients in the decomposition of χI in the eigenbasis of A. Here we use that a spectral radius of a
d-regular graph is d and it is achieved at the all-unit vector. Also, in the case of an edge-transitive graph, the Hoffman
bound coincides with Lovász theta-bound [18].
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3. Proof of Theorem 1.1

An example of an independent set of size
(
k2−k−1
k−2

)
is given by a collection of all sets, containing elements 1 and 2. Clearly,

the adjacency matrix of the Johnson graph J(n, k, 1) belongs to the Bose–Mesner algebra with

f(1) = 1, f(0) = f(2) = · · · = f(k) = 0.

It is straightforward to check that the coefficients in the standard basis of the Bose–Mesner algebra are the following:

b0 = b1 = · · · = bk−2 = 0, bk−1 = 1, bk = −k

and
λ0 = −k

(
n− k
k

)
+ k

(
n− k + 1

k

)
= k

(
n− k
k − 1

)
,

λ1 = k

(
n− k − 1

k − 1

)
− (k − 1)

(
n− k
k − 1

)
, λ2 = −k

(
n− k − 2

k − 2

)
+ (k − 2)

(
n− k − 1

k − 2

)
.

For n = k2 − k + 1, we have
λ1 = λ2 = − 1

k − 1

(
n− k
k − 1

)
< 0

and
λ3 = k

(
n− k − 3

k − 3

)
− (k − 3)

(
n− k − 2

k − 3

)
=

2k2 − 3k − 3

k2 − 3k + 2

(
n− k − 3

k − 3

)
> 0.

Also,
|λ4|, |λ5|, . . . , |λk| ≤ k

(
n− k
k − 3

)
.

Hence, λ1 = λ2 are the smallest eigenvalues.
Now the upper bound follows from the Hoffman bound (1):

−λmin
d− λmin

=
1

k2 − k + 1
=

(
n−2
k−2

)(
n
k

) .

4. Discussion

Let us briefly discuss the sporadic nature of the result. In all solved cases, maximal independent sets form designs or juntas.
The Hoffman bound is tight when the corresponding characteristic vector belongs to maximal and minimal eigenspaces,
and it seems difficult to modify the method in other cases. The maximal eigenspace is always unique and corresponds to
the all-unit vector. For t ≥ 1, the characteristic vectors of all known examples belong to more than two eigenspaces, so
several minimal eigenvalues should coincide in order to use the Hoffman bound. Summing up, it seems that the only case
is t = 1, in which we have an example with the characteristic vector in the first three eigenspaces. So we need λ1 = λ2

which implies n = k2 − k + 1.

Finite projective planes
If k − 1 is a prime power, then one can prove the upper bound in Theorem 1.1 combinatorially (see [4]). Since Johnson
graphs are vertex-transitive (moreover, they are edge-transitive), one has

w(J) · α(J) ≤ |V (J)|.

In our case, k2−k+ 1 is the size of a projective plane over GF (k−1), and so w(J [k2−k+ 1]) ≥ k2−k+ 1. This immediately
implies the bound.

However, for a composite k − 1, the corresponding construction may not exist. A major negative result is a celebrated
Bruck–Ryser theorem [5] which states that if n is a positive integer of the form 4k+1 or 4k+2 and n is not equal to the sum
of two integer squares, then n does not occur as the order of a finite plane. A widely known conjecture is that the order of
a finite plane is always a prime power. Also, the non-existence of a finite plane of order 10 was proven by Lam [17].
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Uniqueness
For k = 3, the graph J(7, 3, 1) has a maximal independent set of another structure, namely

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {5, 6, 7}}.

For other values of k, it seems very likely that every maximal independent set of J(k2− k+ 1, k, 1) forms a family with two
elements in common (it was also conjectured by Aljohani, Bamberg, and Cameron [1]). However, we are not able to prove
it. Following the proof of Theorem 1.1, an independent set I of the maximal size satisfies the equality in (2), and thus χI
belongs to the zeroth, the first and the second eigenspaces. The main obstacle in our attempt is a relatively complicated
structure of the second eigenspace.
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[7] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 2 12 (1961) 313–320.
[8] P. Frankl, On families of finite sets no two of which intersect in a singleton, Bull. Aust. Math. Soc. 17(1) (1977) 125–134.
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