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2División de Matemáticas e Ingenierı́a, FES Acatlán, Universidad Nacional Autónoma de México, Naucalpan, Mexico
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Abstract

The dichromatic number and the diachromatic number are generalizations of the chromatic number and the achromatic
number for digraphs considering acyclic colorings. In this paper, we determine the diachromatic number of digraphs arising
from the Zykov sum of digraphs that accept a complete k-coloring with k = 1+

√
1+4m
2

for a suitable m. As a consequence,
the diachromatic number equals the harmonious number for every digraph in this family. In particular, we determine the
diachromatic number of digraphs arising from the Zykov sum of Hamiltonian factorizations of complete digraphs over a
suitable digraph. We also obtain the equivalent results for graphs. Furthermore, we determine the achromatic number
for digraphs arising from the generalized composition in terms of the thickness of complete graphs. Finally, we extend
some results on the dichromatic number of Zykov sums of tournaments to the class of digraphs that are not tournaments
and apply them, and the results obtained for the diachromatic number, to the problem of the existence of a digraph with
dichromatic number r and diachromatic number t for some particular cases with 2 ≤ r ≤ t.

Keywords: diachromatic number; dichromatic number; achromatic number; harmonious number; factorization; products
of (di)graphs.
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1. Introduction

A k-coloring of a digraph D is an acyclic vertex-coloring (that is, each color class induces a subdigraph with no directed
cycles). The dichromatic number dc(D) of D is the smallest k for which there exists a k-coloring of D [10]. Any dc(D)-
coloring of D is also complete (that is, for every pair (i, j) of different colors there is at least one arc uv such that u is
colored i and v is colored j) [2,5–7]. The diachromatic number dac(D) of D is the largest k in a complete k-coloring of D [1].
Therefore, the size m of a digraph D is upper bounded by 2

(
dac(D)

2

)
and hence,

dac(D) ≤ 1+
√
1+4m
2 (1)

and both coincide if and only if there are exactly two arcs between both color classes. For graphs (which can be seen as
symmetric digraphs), such parameters are called the chromatic number χ and the achromatic number ψ, respectively.

On the other hand, a coloring of D is called harmonious if for every pair (i, j) of different colors there is at most one arc
uv such that u is colored i and v is colored j [5–7]. The harmonious number dh(D) of D is the smallest k for which there
exists a harmonious k-coloring of D. For graphs, it is called harmonious number and it is denoted by h. Furthermore,
observe that the size m of a digraph D is bounded above by 2

(
dh(D)

2

)
. Therefore, for any digraph D of size m we have that

dc(D) ≤ dac(D) ≤ 1+
√
1+4m
2 ≤ dh(D). (2)

Observe that the first inequality becomes equality whenever the minimum and maximum numbers of colors in an acyclic
complete coloring coincide, as in the case of the directed triangle; the second and third inequalities become equalities when
there is exactly one (i, j)-arc for each pair of colors i 6= j.

Let D be a digraph and X = {Hu : u ∈ V (D)} a family of nonempty mutually vertex-disjoint digraphs. The Zykov sum
σ(X,D) of X over D is a digraph with vertex set

⋃
u∈V (D)

V (Hu) and arc set

⋃
u∈V (D)

A(Hu) ∪ {ab : a ∈ V (Hu), b ∈ V (Hv), uv ∈ A(D)} .
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The corresponding operation for graphs is called generalized composition and it is denoted by D[X]. If Hu
∼= H for every

u ∈ V (D), then σ(X,D) is called lexicographic product (also called digraph composition) and it is denoted by D[H]. Also,
Di[H] := (Di−1[H])[H] with D1[H] := D[H]. The dichromatic number of Zykov sums and composition of digraphs were
studied by Neumann-Lara in [11].

In this paper, we determine the diachromatic number of digraphs arising from the Zykov sum of digraphs that accept a
complete k-coloring with k = 1+

√
1+4m
2 for a suitablem. As a consequence, the diachromatic number equals the harmonious

number for every digraph in this family. We also determine the diachromatic number (and hence the harmonious number)
of digraphs arising from the Zykov sum of Hamiltonian factorizations of complete digraphs over a suitable digraph. Finally,
we extend some results on the dichromatic number of Zykov sums of tournaments to the class of digraphs (which are not
tournaments) and apply the results obtained in Section 3 to the problem of the existence of digraphs with dichromatic
number r and diachromatic number t for some particular cases with 2 ≤ r ≤ t.

2. Definitions

For concepts not defined here, we refer the reader to [4]. Let [n] denote the set {1, 2, . . . , n}. For two nonempty vertex sets
X,Y of a digraph D, we define [X,Y ] = {(x, y) ∈ A(D) | x ∈ X, y ∈ Y }. Let m ≥ 2. In the case of digraphs, Km denotes the
complete symmetric digraph. In the case of graphs, Km denotes the complete graph. A factor Hj of the complete digraph
(respectively, graph) Km is a spanning subdigraph (respectively, subgraph). A factorization Y of Km is a set of q pairwise
arc-disjoint (respectively, edge-disjoint) factorsHj such that these factors induce a partition in the arcs (respectively, edges)
with j ∈ [q]. If Hj

∼= H (for all j ∈ [q]) then it is called H-factorization. A relabel factorization X of a factorization Y is
to relabel the vertices v1, v2, . . . , vm of each factor Hj into v1j , v2j , . . . , vmj to make pairwise-disjoint vertices. Let D be a k-
diachromatic digraph (respectively, k-achromatic graph) with a k coloring ϕ and, let {C1, C2, . . . , Ck} be the set of chromatic
classes for ϕ with |Ci| = qi. For each i ∈ [k], denote the set of vertices of the chromatic class Ci by {ui,1, ui,2, . . . ui,qi}. In
this case, V (D) =

⋃k
i=1 Ci. For each i ∈ [k], letXi = {Hui,1 , Hui,2 , . . . ,Hui,qi

} be a relabel factorization ofKmi into qi factors;
that is,

⋃qi
j=1Hui,j

= Kmi
. We consider the Zykov sum σ(X,D), where

X = (Hui,j )ui,j∈V (D) =

k⋃
i=1

Xi.

Observe that for the vertex vli,j , the subindex j and the superindex l correspond to vertex l in the factor j of the relabel
factorization of the complete digraph (respectively, graph) Kmi and the subindex i corresponds to the color of the vertex
ui,j in the digraph (respectively, graph) D. For the ease of reading, in Figure 2.1 we depict the Zykov sum σ(X,

−→
C 6), where

X = {X1, X2, X3} while X1, X2 and X3 are relabel factorizations of K2, K3 and K4 respectively, the color 1, 2 and 3 are
represented in the vertices by the symbolsF, � and N, respectively.

(a) X1 (b) X2 (c) X3

Figure 2.1: The Zykov sums.
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An equitable coloring is a coloring in such a way that the numbers of vertices in any two color classes differ by at most
one [9]. We reserve the term balanced coloring for the case in which any two color classes have the same cardinality.

3. The diachromatic number of Zykov sums

Let m ≥ 2. Throughout this section, Km denotes the complete symmetric digraph. A digraph D is k-minimal if dac(D) = k

and dac(D − f) < k for all f ∈ A(D).

Theorem 3.1 (see [1]). Let D be a digraph with diachromatic number k. Then, D is k-minimal if and only if D has size
k(k − 1).

Theorem 3.2. Let D be a k-minimal digraph of order n with a k-coloring ϕ. Let {C1, C2, . . . , Ck} be the set of chromatic
classes for ϕ with |Ci| = qi. For each i ∈ [k], let Ci = {ui,1, ui,2, . . . ui,qi} and let Xi = {Hui,1

, Hui,2
, . . . ,Hui,qi

} be a relabel
factorization of Kmi into qi factors. Then σ(X,D) is t-minimal, where

X =

k⋃
i=1

Xi and t =

k∑
i=1

mi.

Proof. We take a partition of Kmi in qi factors. In order to have a set of colored and sorted vertices arising from V (Kmi) =

{v1i , v2i , . . . , v
mi
i }, we define the following coloring. Let fi : V (Kmi

) → [mi] be the complete mi-colorings of Kmi
such that

fi(v
l
i) = l for each l ∈ [mi]. Let fi,j : V (Hui,j

) → [mi] the natural restriction of fi into each factor Hui,j
, that is, fi,j(vli,j) =

fi(v
l
i) = l for any vertex vli,j ∈ V (Hui,j

), with i ∈ [k], j ∈ [qi] and l ∈ [mi], see Figure 2.1.
Let ς : V (σ(X,D))→ [t] be a t-coloring such that for each l ∈ [mi]

ς(vli,j) = c(i, l) :=

i−1∑
a=0

ma + l,with m0 = 0.

That is, if i and l are fixed, for each j ∈ [qi] the vertex vli,j in the factor Hui,j
has color c(i, l). Thus, the set of vertices

colored c(i, l) of ς is
{vli,1, vli,2, . . . , vli,qi}.

Since the Zykov sums of empty graphs is empty, the coloring is proper and then acyclic due to the fact that the induced
subgraph by {vli,1, vli,2, . . . , vli,qi} of σ(X,D) is empty.

Next, we claim the ς coloring is minimal and complete. Let c(i, l) and c(i′, l′) be two colors of ς with i, i′ ∈ [qi], l ∈ [mi]

and l′ ∈ [mi′ ]. If i = i′, since each Hui,j has the mi colors of fi, then vli,jv
l′

i,j is the unique arc of Hui,j for some j and then
there exists a unique arc between c(i, l) and c(i, l′). On the other hand, since ϕ is minimal and complete, if i 6= i′ there
exists a unique arc ui,jui′,j′ such that ϕ(ui,j) = i and ϕ(ui′,j′) = i′ with j ∈ [qi] and j′ ∈ [q′i]. Therefore,

[
V (Hui,j), V (Hu′

i,j
′)
]

is a bipartition of a directed complete bipartite subdigraph of σ(X,D). In consequence, for a fixed l and l′ the arc vli,jvl
′

i′,j′

is the unique arc from a vertex of color c(i, l) to a vertex with color c(i′, l′).

The following corollaries are direct consequences of Theorem 3.2.

Corollary 3.1. LetD be a k-minimal digraph of order nwith a equitable k-coloring ϕ. LetXi be a relabel factorization ofKm

into q factors, that is, Xi = {Hui,1
, Hui,2

, . . . ,Hui,q
} for i ∈ [k]. Then σ(X,D) is km-minimal with an equitable km-coloring

where

X =

k⋃
i=1

Xi.

Corollary 3.2. Let D be a k-minimal digraph of order n with a balanced k-coloring, such that qk = n. If Km has a relabel
H-factorization into q factors, then D[H] is km-minimal with a balanced km-coloring.

Note that Theorem 3.2 produces a t-minimal digraph for which, their chromatic classes {vli,1, vli,2, . . . , vli,qi} have car-
dinality equal to Ui, therefore this digraph and the Xi relabel factorization (mi copies) fulfills the hypothesis, hence, a
recursive construction can be done given an initial digraph D and Xi factorizations.

Corollary 3.3. Let D be a k-minimal digraph of order n with a balanced k-coloring, such that qk = n. If Km has a relabel
H-factorization into q factors, then Di[H] is kim-minimal with a balanced kim-coloring for all i ∈ Z+.
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Now, we proceed to construct families of digraphs obtained by Zykov sums D and H that satisfy the hypothesis of
Theorem 3.2. We recall some definitions given in [1]. Two vertices are adjacent if they are in a 2-cycle. To obtain an
elementary dihomomorphism of a digraph D, identify two nonadjacent vertices u and v of D. The resulting vertex when
identifying u and v could be denoted by either u or v. An elementary dihomomorphism preserving the cardinality of
arcs is called elementary identification ε, that is, let D be a digraph and u, v ∈ V (D) two independent vertices such that
N+(u) ∩ N+(v) = ∅ and N−(u) ∩ N−(v) = ∅, then ε is the elementary dihomomorphism obtained by identifying u and
v. A digraph D′ is an identification image of a digraph D if and only if D′ can be obtained by a sequence of elementary
identifications beginning with D.

An elementary unfold is the inverse image of an elementary identification and an unfold is the inverse image of an
identification. For example, an unfold of K5 is −→C 20 if we follow a Eulerian circuit of K5, and vice versa, an identification of
−→
C 20 is K5.

Remark 3.1. A digraph D is k-minimal if and only if there exists an elementary identification Γ from the digraph D to the
complete digraph Kk.

As a direct consequence, we have the following theorem.

Theorem 3.3. Let −→C n with n ≥ 0. The dac(−→C n) = k if k(k − 1) ≤ n < k(k + 1). Moreover −→C n is k-minimal if and only if
n = k(k − 1).

As a consequence of Remark 3.1 and Theorem 3.3, we have that Kk can be unfolded in the cycle −→C k(k−1). Consider an
unfold in K2q+1 into −→C 2q(2q+1). The induced k-coloring of −→C 4q2+2q, for k = 2q + 1, is equitable where each chromatic class
has 2q vertices. On the other hand, for m = 2q + 1, it is known that Km accepts an H-factorization into q factors where H
is a Hamiltonian cycle.

Corollary 3.4. The digraph D =
−→
C i

4q2+2q[
−→
C 2q+1] is (2q + 1)i+1-minimal with a balanced (2q + 1)i+1-coloring, then for all

i, q ∈ Z+

dac(D) = dh(D) = (2q + 1)i+1.

Now, for m = 2q, it is known that Km accepts an H-factorization into q factors, where H is a Hamiltonian path. Hence,
we have the following corollary:

Corollary 3.5. The digraph D =
−→
C i

4q2+2q[
−→
P 2q] is 2q(2q + 1)i-minimal with a balanced 2q(2q + 1)i-coloring, then for all

i, q ∈ Z+

dac(D) = dh(D) = 2q(2q + 1)i.

4. The achromatic number of generalized compositions of graphs

In this section, we extend the results of Section 3 for graphs. Since the proofs of these results for graphs are analogous to
those of the results for digraphs, we omit them.

Theorem 4.1. Let G be a digraph with achromatic number k. Then, G is k-minimal if and only if G has size
(
k
2

)
.

Theorem 4.2. Let G be a k-minimal graph of order n with a k-coloring ϕ. Let {C1, C2, . . . , Ck} be the set of chromatic
classes for ϕ with |Ci| = qi. For each i ∈ [k] let Ci = {ui,1, ui,2, . . . ui,qi} and let Xi = {Hui,1

, Hui,2
, . . . ,Hui,qi

} be a relabel
factorization of Kmi

into qi factors. Then G[Xi] is t-minimal, where

X =

k⋃
i=1

Xi and t =

k∑
i=1

mi.

Corollary 4.1. Let G be a k-minimal graph of order n with a balanced k-coloring ϕ. Let Xi be a relabel factorization of Km

into qi factors. Then G[Xi] is km-minimal with an balanced km-coloring, where

X =

k⋃
i=1

Xi.

Corollary 4.2. Let G be a k-minimal graph of order n with a balanced k-coloring, such that qk = n for some q ∈ N. If Km

has a relabel H-factorization into q factors, then G[H] is km-minimal with a balanced km-coloring.

10



M. Olsen, C. Rubio-Montiel, A. Silva-Ramı́rez / Discrete Math. Lett. 14 (2024) 7–12 11

Corollary 4.3. Let G be a k-minimal graph of order n with a balanced k-coloring, such that qk = n for some q ∈ N. If Km

has a relabel H-factorization into q factors, then Gi[H] is kim-minimal with a balanced kim-coloring for all i ∈ Z+.

For the case of graphs, take an unfold of K2q+1, following an Eulerian circuit, into Cq(2q+1). The induced k-coloring of
C2q2+q, for k = 2q+ 1, is equitable where each class has q vertices then we have the following corollaries. Note that C4q2+2q

is an unfold of C2q2+q and two empty disjoint directed cycles of the same size can be identified in a cycle.

Corollary 4.4. The graph G = Ci
2q2+q[C2q+1] is (2q + 1)i+1-minimal with a balanced (2q + 1)i+1-coloring, then for all

i, q ∈ Z+

ψ(G) = h(G) = (2q + 1)i+1.

Corollary 4.5. The graph G = Ci
2q2+q[P2q] is 2q(2q+ 1)i-minimal with a balanced 2q(2q+ 1)i-coloring, then for all i, q ∈ Z+

ψ(G) = h(G) = 2q(2q + 1)i.

5. Applications

Consider the following result by V. Bhave:

Theorem 5.1 (see [3]). For every pair of integers a ≤ b, there exists a graph G such that χ(G) = a and α(G) = b.

Observe that for symmetric digraphs this result can be extended trivially since the bidirected orientation ←→G of any
graph G satisfies that dc(←→G ) = χ(G) and dac(←→G ) = α(G).

In order to extend Theorem 5.1 to the class of non-symmetric digraphs, we use results of Section 3 to establish some
sets of integers a, b such that there exists a digraph D with dc(D) = a and dac(D) = b. In Corollary 3.4, for any two positive
integers i, q, we determined the diachromatic number of the composition D =

−→
C 4q2+2q[

−→
C i

2q+1]. In order to determine the
dichromatic number of D =

−→
C 4q2+2q[

−→
C i

2q+1], we follow the ideas proposed by Neumann-Lara in [11]. Since Neumann-Lara
studied tournaments and a tournament is acyclic if and only if it is transitive, these two concepts are equivalent in the
class of tournaments, thus for tournaments, if a chromatic class is transitive it is clearly acyclic, but for digraphs, we only
require that the chromatic classes are acyclic.

The following result is a generalization of Propositions 32(iii) and 34 [11], simplifying the notation using Corollary
43 [11]. We omit the proof because it is analogous to the original one (changing transitive sets by acyclic sets, tournaments
by digraphs, and Λm,r by Λ′m,r).

Proposition 5.1. Let H,α be digraphs such that H has order m and dc(α) = k, then

1. dc(H[α]) ≥
⌈
k·m
r

⌉
.

Let r be the maximum order of an acyclic set of vertices of H. If H contains an isomorphic copy of Λ′m,r as a spanning
subgraph, then

2. dc(H[α]) =
⌈
k·m
r

⌉
.

The next result is concerned with the recurrence relation that appears in the solution of the legendary Josephus Flavius
problem. For more details about the mathematical problem see [12]. The approach is similar to the one used in [8].

Theorem 5.2 (see Theorem 1 in [12]). Consider the recurrence relation D2q+1
n =

[
2q+1
2q ·D

2q+1
n−1

]
(n ≥ 1 and D2q+1

0 = 1). For
each interger q ≥ 2 there is real number K2q+1 such that

D2q+1
i = K2q+1

(
2q + 1

2q

)i

+ ei,2q+1

and −2q + 1 < ei,2q+1 ≤ 0.

The problem of determining the “exact” formula is still open but for q = 1

Corollary 5.1 (see Corollary 1 in [12]). Consider the recurrence relation Dn =
[
3
2Dn−1

]
(n ≥ 1 and D0 = 1), then

Dn = K

(
3

2

)n

(n = 1, 2, . . . )

where K ∼ 1.62227 is an irrational number.

11
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We define −→C i
2q+1 =

[−→
C 2q+1

[−→
C 2q+1

[
. . .
[−→
C 2q+1

]]]]
︸ ︷︷ ︸

i

.

Proposition 5.2. dc(−→C i
2q+1) = D2q+1

i

Proof. Clearly the maximal set of an acyclic set of vertices of−→C i
2q+1 is 2q and−→C i

2q+1 contains an isomorphic copy of Λ′2q+1,2q

as a spanning subdigraph. By Proposition 5.1, it follows that dc
(−→
C 2q+1

[−→
C 2q+1

])
=
⌈
2(2q+1)

2q

⌉
and since

⌈
2q+1
2q

⌉
= 2, thus

dc
(−→
C 2q+1

[−→
C 2q+1

])
=

⌈
(2q + 1)

2q

⌈
(2q + 1)

2q

⌉⌉
.

Repeating this argument i− 1 times, it follows that

dc(
−→
C i

2q+1) =

⌈
2q + 1

q

⌈
2q + 1

q

⌈
. . .

⌈
2q + 1

q

⌉⌉⌉⌉
︸ ︷︷ ︸

i

.

Now, the result follows from Theorem 5.2.

From Propositions 5.1 and 5.2, the next result follows.

Theorem 5.3. dc(−→C 4q2+2q[
−→
C i

2q+1]) =

⌈
4q2+2q

4q2+2q−1

⌈
D2q+1

i

⌉⌉
.

Observe that −→C 4q2+2q[
−→
C i

2q+1] is isomorphic to −→C i
4q2+2q[

−→
C 2q+1]. Therefore, for any pair of positive integers i and q,

Theorem 5.3 determines the dichromatic number and Corollary 3.4 determines the diachromatic number of the composition
−→
C 4q2+2q[

−→
C i

2q+1]. Although these results provide an infinite number of pairs of integers a ≤ b such that there exists a non-
symmetric digraph D satisfying that dc(D) = a and dac(G) = b, we do not know the “exact” formula of the dichromatic
number; so, we need other methods in order to extend Theorem 5.1 to the class of non-symmetric digraphs.
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