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Abstract

The dynamical structure of metric and linear self-maps on combinatorial trees is described. Specifically, the following
question is addressed: given a map from a finite set to itself, under what conditions there exists a tree on this set such that
the given map is either a metric or a linear map on this tree? The author proves that a necessary and sufficient condition
for this is that the map has either a fixed point or a periodic point with period two, in which case all its periodic points
must have even periods. The dynamical structure of tree automorphisms and endomorphisms is also described in a similar
manner.
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1. Introduction

Let f : [0, 1] → [0, 1] be a continuous map from the unit interval to itself, and x ∈ [0, 1] be its periodic point of period n.
Then the orbit orbf (x) = {x, f(x), . . . , fn−1(x)} is a finite set, with the restriction f to orbf (x) being a cyclic permutation.
One way to encode the information on other possible periodic points for f in this setting is to consider the so-called periodic
digraph Γ. This digraph has the vertex set V (Γ) = {1, . . . , n − 1} and the arc set A(Γ) = {(i, j) : min{f(xi), f(xi+1) ≤
j < max{f(xi), f(xi+1)}}. The idea behind this construction is that the vertices of Γ correspond to the minimal intervals
[xi, xi+1], and the existence of an arc i→ j indicates that the interval [xi, xi+1] “covers” the interval [xj , xj+1] under f , i.e.,
[xj , xj+1] ⊂ f([xi, xi+1]). Using this combinatorial approach, one can obtain an elegant proof of the famous Sharkovsky
theorem, as shown in [4,14].

From a purely combinatorial point of view, the construction of periodic digraphs stems from the n-vertex path and its
cyclic permutations. Naturally, it can be extended to a broader class of combinatorial trees and their arbitrary vertex self-
maps. The corresponding digraphs are called Markov graphs, and they can be used to obtain analogues of the Sharkovsky
theorem for self-maps on topological trees [1].

In this paper, we consider metric and linear self-maps on trees. Metric maps (also known as non-expanding, or 1-
Lipschitz maps) provide a natural generalization of graph homomorphisms. In fact, they can be defined precisely as
homomorphisms between reflexive graphs. On the other hand, linear maps are those that “preserve” metric intervals
between pairs of vertices. For the properties of metric maps between general graphs we refer to the paper [16]. The
papers [10, 11] are devoted to the study of linear and metric self-maps on trees by the means of Markov graphs. We also
note that linear maps between median graphs (in particular, trees) can be characterized as maps which preserve medians
for all triplets of vertices [12].

Our main result is Theorem 3.1, which completely describes the dynamical structure of metric and linear self-maps on
trees. Subsequently, Corollary 3.1 and Proposition 3.2 provide answers to similar questions: when a given self-map of a
finite set V is an isomorphism (respectively, an endomorphism) of some tree on V .

A similar problem for lattices and their (anti-)endomorphisms was considered in [3,15]. For the results on underlying
dynamical structure of endomorphisms and automorphisms of certain abelian groups see [6,7]. Finally, we note that a set
V together with a self-map f : V → V also can be viewed as an algebraic object (the so-called monounary algebra) or as a
topological object (the so-called primal space, or a functional Alexandroff space). For an extensive literature on monounary
algebras, we refer to the monograph [5], and for more information on primal spaces and functional Alexandroff spaces we
refer to the foundational papers in this area [2,13].
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2. Preliminaries

Graphs and digraphs
In this paper, by a graph, we mean a finite undirected simple graph. For convenience, the edges in graphs will be denoted
simply as uv. A graph is connected provided any pair of its vertices can be joined by a path. The vertex set V (G) of a
connected graph G possesses a natural metric dG, where dG(u, v) equals the length (i.e., number of edges) of a shortest
path between u and v. The diameter of a connected graph G is the value diam(G) = max{dG(u, v) : u, v ∈ V (G)}. The
diameter diam(A) of a set of vertices A ⊂ V (G) is then defined as the diameter of the corresponding induced subgraph
G[A].

For a pair of vertices u, v ∈ V (G) in a connected graph G, the set [u, v]G = {x ∈ V (G) : dG(u, x) + dG(x, v) = dG(u, v)} is
called the metric interval between u and v. In other words, [u, v]G consists of all vertices that lie on shortest paths between
u, v. A set of vertices S ⊂ V (G) is called convex if [u, v]G ⊂ S for all u, v ∈ S. The convex hull ConvG(A) of a set A ⊂ V (G) is
the smallest convex set containing A. It is clear that ConvG(A) equals the intersection of all convex sets S with A ⊂ S.

For a triple of vertices u, v, w ∈ V (G), let MG(u, v, w) = [u, v]G ∩ [u,w]G ∩ [v, w]G define their median set. A connected
graph G is called median if |MG(u, v, w)| = 1 for all u, v, w ∈ V (G). In this case, the unique vertex in MG(u, v, w) is called
the median of the triple u, v, w, and is commonly denoted by mG(u, v, w).

For an edge uv ∈ E(G), by WG(u, v) = {x ∈ V (G) : dG(u, x) < dG(v, x)} and WG(v, u) = {x ∈ V (G) : dG(v, x) < dG(u, x)}
we denote the corresponding half-spaces.

A set of vertices A ⊂ V (G) is called Chebyshev if for every x ∈ V (G) there exists a unique vertex ax ∈ A which
minimizes the distance from x to A (i.e., ax is a unique vertex from A with dG(x, ax) = dG(x,A) := min{dG(x, a) : a ∈ A}).
The corresponding vertex ax is denoted by prA(x) and is called the projection of x onto A.

A tree is a connected graph without cycles. Prominent examples of trees include paths and stars. Note also that any
tree is a median graph. A vertex of degree 1 in a tree is called a leaf. By Leaf(X) we denote the set of leaves in a tree X.

For a finite set V , by Tr(V ) we denote the collection of all trees X with V (X) = V .
Aside from graphs, in this paper we also will be dealing with digraphs. In the next section, we define the so-called

Markov graphs for self-maps of trees. For now, note that our digraphs are finite, simple, but they can contain loops as well
as cycles of length 2.

For a digraph D, its converse digraph Dco is obtained from D by reversing arc orientations of D. The out-degree of a
vertex u in a digraph D is the number d+

D(u) = |{v ∈ V (D) : (u, v) ∈ A(D)}|. A digraph D is called partial functional if
d+
D(u) ≤ 1 for all u ∈ V (D).

Maps between graphs
Let V be a finite set without any structure. By T (V ) we denote the class of all self-maps of V , i.e., maps of the form
σ : V → V . The identity map on V is denoted by idV . The image of a given map σ ∈ T (V ) will be denoted as Imσ.

An element x ∈ V is called a fixed point of a map σ ∈ T (V ) provided σ(x) = x. The set of all fixed points of σ is denoted
by fixσ. An element x ∈ V is called a σ-periodic point if there exists k ∈ N with σk(x) = x. The smallest such a k is called
the period of x. Hence, fixed points are exactly σ-periodic points of period 1. By perσ we denote the set of all σ-periodic
points. The set orbσ(x) = {x, σ(x), . . . , σn(x), . . . } is called the orbit of x. A set A ⊂ V is called σ-invariant if σ(A) ⊂ A. For
example, the orbit orbσ(x) of any element x ∈ V is always a σ-invariant set. Note also that every non-empty σ-invariant
set contains at least one σ-periodic point.

Now let X be a tree and σ : V (X) → V (X) be its vertex self-map. The corresponding Markov graph is a digraph
Γ = Γ(X,σ) with the vertex set V (Γ) = E(X) and the arc set A(Γ) = {(uv, xy) : x, y ∈ [σ(u), σ(v)]X}. In this digraph, the
vertices of Γ represent the edges of X, and there is an arc uv → xy provided the edge uv “covers” xy under the map σ.

Example 2.1. Let X be a tree with V (X) = {1, . . . , 7} and E(X) = {12, 23, 34, 45, 26, 37}. Also, consider the map σ =(
1 2 3 4 5 6 7
4 1 3 6 2 4 2

)
. Then the corresponding Markov graph Γ(X,σ) is depicted in Figure 2.1.

The following proposition provides simple (but useful) bounds on the size of Markov graphs.

Proposition 2.1. [8] Let X be an n-vertex tree and σ : V (X)→ V (X) be its self-map. Then

| Imσ| − 1 ≤ |A(Γ(X,σ))| ≤ (n− 1) · diam(Imσ).

In this paper, we consider different classes of maps on trees. A map σ : V (G) → V (H) between the vertex sets of two
connected graphs G and H is called
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Figure 2.1: The Markov graph Γ(X,σ) for the pair (X,σ) from Example 2.1.

• a homomorphism if f(u)f(v) ∈ E(H) for all uv ∈ E(G);

• an isomorphism if σ is a bijective homomorphism and f−1 is also a homomorphism;

• a metric map, if dH(σ(u), σ(v)) ≤ dG(u, v) for all u, v ∈ V (G);

• a linear map, if f([u, v]G) ⊂ [f(u), f(v)]H for all u, v ∈ V (G).

A homomorphism (isomorphism) of a graph G to itself is called an endomorphism (automorphism) of G.
It is straightforward to prove that a map σ : V (G) → V (H) is metric if and only if dG(σ(u), σ(v)) ≤ 1 for all edges

uv ∈ E(X) (see [10]). Hence, each homomorphism is a metric map. Similarly, linear maps between median graphs (in
particular, between trees) can be characterized as maps which preserve medians.

Proposition 2.2. [10, 12] Let f : V (G) → V (H) be a map between two median graphs G and H. Then f is linear if and
only if f(mG(u, v, w)) = mH(f(u), f(v), f(w)) for all triples of vertices u, v, w ∈ V (G).

For trees, there is a notable duality between metric and linear self-maps, as suggested by the following theorem.

Theorem 2.1. [10] Let X be a tree and σ : V (X)→ V (X) be a map. Then

1. σ is metric if and only if Γ(X,σ) is partial functional;

2. σ is linear if and only if the converse digraph (Γ(X,σ))co is partial functional.

Moreover, one can characterize the maps which achieve the lower bound from Proposition 2.1.

Theorem 2.2. [10] Let X be a tree and σ : V (X) → V (X) be its map. Then |A(Γ(X,σ))| = | Imσ| − 1 if and only if σ is a
linear metric map.

One example of a tree self-map which is linear and metric at the same time is provided by the projection map prA :

V (X) → V (X) on a Chebyshev (equivalently, connected) set of vertices A ⊂ V (X). Notably, projections on connected sets
with at least 3 elements in trees can be characterized in terms of the corresponding Markov graphs (see [8]).

As mentioned in the previous section, our digraphs can have loops. Specifically, the Markov graph Γ(X,σ) has a loop at
the vertex uv ∈ E(X) if and only if u, v ∈ [σ(u), σ(v)]X . However, there are two types of loops in Markov graphs. Namely, an
edge uv ∈ E(X) is called σ-positive if σ(u) ∈WG(u, v) and σ(v) ∈WG(v, u). Similarly, an edge uv ∈ E(X) is called σ-negative
if σ(u) ∈ WG(v, u) and σ(v) ∈ WG(u, v). By p(X,σ) and n(X,σ) we denote the numbers of σ-positive and σ-negative edges
in X, respectively. These numbers are related by the following equality.

Theorem 2.3. [9] For any tree X and a map σ : V (X)→ V (X), it holds n(X,σ) + |fixσ| = p(X,σ) + 1.

For metric and linear maps, we can say even more.

Proposition 2.3. [11] Let σ : V (X) → V (X) be a linear or a metric map on a tree X. Then n(X,σ) ≤ 1. In addition, the
equality n(X,σ) = 1 necessarily implies p(X,σ) = 0.

3. Main results

Before proving the main result of the paper, we note that it is trivial to describe self-maps on finite sets V which are metric
(equivalently, linear) for all trees on V .
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Proposition 3.1. Let n = |V | ≥ 3. For a map σ ∈ T (V ) the following statements are equivalent:

1. σ is constant or σ = idV ;

2. for every tree X ∈ Tr(V ) the map σ is metric on X;

3. for every tree X ∈ Tr(V ) the map σ is linear on X.

Proof. The implications 1⇒ 2 and 1⇒ 3 are trivial.
To prove the implication 2 ⇒ 1, suppose that σ 6= idV is a non-constant map. Then there exist vertices u, v ∈ V with

σ(u) 6= u and σ(v) 6= σ(u). In particular, u 6= v.
If σ(u) 6= v and σ(v) 6= u, then consider any path X ∈ Tr(V ) with uv ∈ E(X) and Leaf(X) = {σ(u), σ(v)}. The inequality

d+
Γ(X,σ)(uv) = |V (Γ(X,σ))| = |E(X)| = n−1 ≥ 2 implies that σ is not a metric map onX. If σ(u) = v and σ(v) 6= u (similarly,

if σ(u) 6= v and σ(v) = u), then for any path X ∈ Tr(V ) with uv ∈ E(X) and Leaf(X) = {v, σ(v)}, the map σ is not metric on
X.

Finally, consider the case where σ(u) = v and σ(v) = u. Since n ≥ 3, the set V \ {u, v} is nonempty. Suppose there
exists an element w ∈ V \ {u, v} such that σ(w) 6= w. Without loss of generality, assume that σ(w) 6= v (a similar argument
applies if σ(w) 6= u). Then, for any path X ∈ Tr(V ) with uw ∈ E(X) and Leaf(X) = {v, σ(w)}, the map σ is not metric on X.
Otherwise, let V \ {u, v} ⊂ fixσ. If n ≥ 4, then for any path X ∈ Tr(V ) with Leaf(X) = {u, v}, the map σ is not metric on X.
Thus, we must consider the case with n = 3 and V = {u, v, w}. In this case, for the path X ∈ Tr(V ) with E(X) = {uv, vw}
it holds d+

Γ(X,σ)(vw) = 2 which again implies that σ is not metric on X.
Now we prove the implication 3⇒ 1. Let σ be linear on any tree X ∈ Tr(V ). Suppose that σ is not a permutation. Then

there exists u ∈ V with |σ−1(u)| ≥ 2. Fix two distinct elements v, w ∈ σ−1(u). Fix an arbitrary x ∈ V and consider the star
X ∈ Tr(V ) centered at x. Since σ is linear on X and x ∈ [v, w]X , we have σ(x) ∈ [σ(v), σ(w)]X = {u}, i.e. σ(x) = u. Hence,
in this case, σ must be a constant map. Further, suppose that σ is a non-identity permutation. Then there exists u ∈ V
with σ(u) 6= u. Similarly, consider the star X ∈ Tr(V ) centered at u. Since n ≥ 3, there is an element v ∈ V \ {u, σ(u)}.
Clearly, σ(u) ∈ Leaf(X) as well as σ2(u) 6= σ(u) and σ(v) 6= σ(u). This means that σ(u) /∈ [σ2(u), σ(v)]X for u ∈ [σ(u), v]X ,
which leads to a contradiction.

Now, we are ready to state and prove the main theorem of the paper, which completely characterizes the dynamical
structure of metric and linear maps on trees.

Theorem 3.1. For a map σ ∈ T (V ) the following statements are equivalent:

1. σ has a fixed point, or there is a σ-periodic point with period two, in which case all σ-periodic points have even periods;

2. there exists a tree X ∈ Tr(V ) such that σ is metric on X;

3. there exists a tree X ∈ Tr(V ) such that σ is linear on X;

4. min
X∈Tr(V )

|A(Γ(X,σ))| = | Imσ| − 1.

Proof. From Theorem 2.2, the implications 4⇒ 2 and 4⇒ 3 are evident.
Let us now prove the implication 2 ⇒ 1. Suppose that σ is a metric map on a tree X ∈ Tr(V ) and assume that σ has

no fixed points. By Theorem 2.3, we have n(X,σ) = p(X,σ) + 1 ≥ 1. Combining this with Proposition 2.3, we can conclude
that n(X,σ) = 1. Let e = uv ∈ E(X) be the unique σ-negative edge in X. Since σ is metric on X, we have σ(u) = v and
σ(v) = u. Therefore, u is a σ-periodic point with period two.

Further, for each σ-periodic point x ∈ V \ {u, v}, consider the function f : orbσ(x) → N defined as f(y) = dX(y,pre(y)),
where y ∈ orbσ(x). For all y ∈ orbσ(x) with pre(y) 6= pre(σ(y)) (this means that y and σ(y) lie in different half-spaces
generated by the edge uv) we have

f(σ(y)) = dX(σ(y),pre(σ(y))) = dX(σ(y), σ(pre(y))) ≤ dX(y,pre(y)) = f(y).

Similarly, for all y ∈ orbσ(x) with pre(y) = pre(σ(y)), we obtain the inequality f(σ(y)) ≤ f(y)− 1. In other words, f(σ(y)) ≤
f(y) for all y ∈ orbσ(x). Since the restriction of σ to orbσ(x) is a cyclic permutation, we can conclude that f must be a
constant function. Therefore, pre(y) 6= pre(σ(y)) for all y ∈ orbσ(x), which implies that x has an even period under σ.

Now we show that 3⇒ 1. Suppose there is a tree X ∈ Tr(V ) such that σ is linear on X, and also suppose σ has no fixed
points. Again, by Theorem 2.3 and Proposition 2.3, we obtain n(X,σ) = 1. Let e = uv ∈ E(X) be the unique σ-negative
edge in X. Now assume x ∈ V is a σ-periodic point with an odd period. Then | orbσ(x) ∩WX(u, v)| 6= | orbσ(x) ∩WX(v, u)|.
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Without loss of generality, we can assume that | orbσ(x)∩WX(u, v)| > | orbσ(x)∩WX(v, u)|. This implies the existence of an
element y ∈ orbσ(x)∩WX(u, v) with σ(y) ∈WX(u, v). Consequently, u ∈ [y, v]X , but σ(u) /∈ [σ(y), σ(v)]X as σ(u) ∈WX(v, u)

and σ(v) ∈WX(u, v). This is impossible because σ is linear on X. Therefore, every σ-periodic point has an even period.
Further, let l(σ) denote the least period of a σ-periodic point. Since fixσ = ∅, we have l(σ) ≥ 2. We need to prove that

l(σ) = 2. To the contrary, suppose that l(σ) ≥ 4 and consider a σ-periodic point x ∈ V with period l(σ). Consider the set
A = ConvX(orbσ(x)) and letX ′ = X[A], n1 = |Leaf(X ′)|, n2 = |{y ∈ V (X ′) : dX′(y) = 2}| and n3 = |{y ∈ V (X ′) : dX′(y) ≥ 3}|.
We have the inequality

3n3 + 2n2 + n1 ≤
∑

y∈V (X′)

dX′(y) = 2|E(X ′)| = 2(|V (X ′)| − 1) = 2(n1 + n2 + n3 − 1),

which trivially implies n3 ≤ n1 − 2. Put mi = mX(σi−1(x), σi(x), σi+1(x)) for every 1 ≤ i ≤ l(σ). By Proposition 2.2,

σ(mi) = σ(mX(σi−1(x), σi(x), σi+1(x))) = mX(σi(x), σi+1(x), σi+2(x)) = mi+1

for all 1 ≤ i ≤ l(σ) − 1 and σ(ml(σ)) = m1. Thus, the set of medians M = {mi : 1 ≤ i ≤ l(σ)} is σ-invariant. Further, it is
easy to see that M ∩ Leaf(X ′) = ∅. If dX′(mi) = 2 for some 1 ≤ i ≤ l(σ), then mi ∈ {σi−1(x), σi(x), σi+1(x)}. This implies
the equality M = orbσ(x) which is impossible since ∅ 6= Leaf(X ′) ⊂ orbσ(x). Hence, dX′(mi) ≥ 3 for all 1 ≤ i ≤ l(σ) which
gives |M | ≤ n3. Therefore, there is a σ-periodic point y ∈M of period at most |M | ≤ n3 ≤ n1 − 2 ≤ | orbσ(x)| − 2 = l(σ)− 2.
This contradicts the minimality of l(σ). Thus, l(σ) = 2.

Finally, we prove the implication 1 ⇒ 4. Proposition 2.1 asserts that minX∈Tr(V ) |A(Γ(X,σ))| ≥ | Imσ| − 1 for all maps
σ ∈ T (V ). Hence, for a given map σ ∈ T (V ) that satisfies the first condition, we must construct a tree X ∈ Tr(V ) on which
σ achieves this bound.

First, suppose that σ is a permutation of V . If there is a fixed point u ∈ fixσ, then for the star X ∈ Tr(V ) centered at u,
the map σ is an automorphism of X. In particular, |A(Γ(X,σ))| = |E(X)| = |V | − 1 = | Imσ| − 1. Thus, assume σ has no
fixed points. Consider the partition V =

⊔k
i=1 orbσ(ui) of V into the orbits of σ-periodic points ui, 1 ≤ i ≤ k. Without loss

of generality, we can assume that | orbσ(u1)| = l(σ) = 2.
For each 1 ≤ i ≤ k, define two sets Ai = {σm(ui) : m ∈ N is odd} and Bi = {σm(ui) : m ∈ N is even}. Further, consider a

graph X on V with the edge set

E(X) = {u1x : x ∈
k⋃
i=1

Ai} ∪ {σ(u1)x : x ∈
k⋃
i=1

Bi}.

One can observe that X ∈ Tr(V ) (in fact, X is the so-called bi-star having central edge u1σ(u1)) and σ is an automorphism
of X. In particular, this gives |A(Γ(X,σ))| = | Imσ| − 1.

Further, we use induction on n = |V | ≥ 1. If σ is a permutation, then we are done. Otherwise, V \ Imσ 6= ∅. For every
u ∈ V \ Imσ define

f(u) = min{k ∈ N : |σ−1(σk(u))| ≥ 2}.

Since V is finite, the map f : V \ Imσ → N is well-defined. Fix an element u0 ∈ V \ Imσ such that f(u0) = min{f(u) :

u ∈ V \ Imσ}, and consider the set
V ′ = V \ {σi(u0) : 0 ≤ i ≤ f(u0)− 1}.

Clearly, the restriction σ′ = σ|V ′ is a self-map on V ′. Also, Imσ′ = Imσ \ {σi(u0) : 0 ≤ i ≤ f(u0) − 1}, which implies
| Imσ′| = | Imσ|−f(u0)+1. Additionally, an element x ∈ V ′ is a σ′-periodic point if and only if x is a σ-periodic point. Thus,
σ′ also satisfies the first condition of the theorem.

We have |V ′| < n, so by induction assumption, there exists a tree X ′ ∈ Tr(V ′) with |A(Γ(X ′, σ′))| = | Imσ′| − 1 =

| Imσ| − f(u0). Since |σ−1(σf(u0)(u0))| ≥ 2, there exists y ∈ σ−1(σf(u0)(u0)) \ {σf(u0)−1(u0)}.
We aim to show that σ−(f(u0)−1)(y) ∩ V ′ 6= ∅.
First, assume y ∈ perσ is a σ-periodic point. Then σf(u0)(u0) = σ(y) is also σ-periodic. Since orbσ(y) = orbσ(σf(u0)(u0)),

it is evident that orbσ(y) cannot share elements with the set {σi(u0) : 0 ≤ i ≤ f(u0) − 1}. Trivially, in this case, σ−k(y) ∩
orbσ(y) 6= ∅ for all k ≥ 1.

Second, suppose y is not σ-periodic. Towards contradiction, assume that

g(y) := max{k ∈ N ∪ {0} : σ−k(y) 6= ∅} < f(u0)− 1.

Fix an element z ∈ σ−g(y)(y). Clearly, z ∈ V \ Imσ. But then f(z) ≤ g(y) + 1 < f(u0), which contradicts the minimal-
ity of f(u0). Hence, in this case, g(y) ≥ f(u0), implying σ−(f(u0)−1)(y) 6= ∅. Moreover, since y 6= σf(u0)−1(u0), it holds
σ−(f(u0)−1)(y) ⊂ V ′.
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Thus, we can fix an element z ∈ σ−(f(u0)−1)(y) ∩ V ′. Further, consider a graph X on V with the edge set

E(X) = E(X ′) ∪ {σi(z)σi(u0) : 0 ≤ i ≤ f(u0)− 1}.

It is easy to see thatX ∈ Tr(V ) is a tree on V sinceX is obtained from the treeX ′ by adding several leaf vertices. Moreover,

|A(X,σ)| = |A(Γ(X ′, σ′))|+
f(u0)−1∑
i=0

d+
Γ(X,σ)(σ

i(z)σi(u0)) = | Imσ| − f(u0) +

f(u0)−1∑
i=0

dX(σi+1(z), σi+1(u0)).

For i = f(u0)− 1, it holds dX(σi+1(z), σi+1(u0)) = dX(σf(u0)(z), σf(u0)(u0)) = 0. And for each 0 ≤ i ≤ f(u0)− 2, we have
dX(σi+1(z), σi+1(u0)) = 1. Therefore, the size of Γ(X,σ) equals

|A(Γ(X,σ))| = | Imσ| − f(u0) +

f(u0)−1∑
i=0

dX(σi+1(z), σi+1(u0)) = | Imσ| − f(u0) + f(u0)− 1 = | Imσ| − 1.

We illustrate some of the ideas from the proof of Theorem 3.1 in the next example.

Example 3.1. Consider a set V = {1, . . . , 9} and its self-map σ =

(
1 2 3 4 5 6 7 8 9
2 1 4 5 6 3 1 4 8

)
. It is clear that 1 is a

σ-periodic point of period two, and all other σ-periodic points have periods two and four. Hence, Theorem 3.1 suggests that
there is a tree X ∈ Tr(V ) with σ being both metric and linear on X. To construct such a tree X, start with the “bijective
part” of σ, i.e., the restriction of σ to the set perσ of all σ-periodic points. In our example, this would be the permutation
σ′ =

(
1 2 3 4 5 6
2 1 4 5 6 3

)
which acts on perσ = {1, 2, 3, 4, 5, 6}.

Let us first construct a tree X ′ ∈ Tr(perσ) where σ′ is both metric and linear (in fact, an automorphism) on X ′. We
start by defining the edge set E(X ′) = {12, 13, 15, 24, 26}. Next, we take the element 7 ∈ V \ perσ and add to X ′ the new
edge 27 (the idea here is that σ(1) = 2, thus the image of the edge 27 under σ will collapse into a vertex 1). Further, we take
8 ∈ V \ perσ and add an edge 38 (again, using the fact that σ(3) = σ(8) = 4). Finally, we add an edge 69 (here we use
the fact that σ(6) = 3 implying that the image of 69 under σ will be a newly added edge 38). Formally, we consider the tree
X ∈ Tr(V ) having E(X) = {12, 13, 15, 24, 26, 27, 38, 69} (see Figure 3.1). Then the corresponding Markov graph Γ(X,σ) has
exactly 6 arcs which equals | Imσ| − 1. Thus, Theorem 3.1 implies that σ is indeed a metric and a linear map on X.

8 9

3 6

1 2

7

5 4

Figure 3.1: The tree X for the map σ from Example 3.1.

Note that a linear endomorphism of a tree must be an automorphism. Indeed, let σ : V (X)→ V (X) be simultaneously
a linear map and an endomorphism of a tree X. It is not difficult to show that the pre-image σ−1(y) of any vertex y ∈ Imσ

is a connected set, implying that |σ−1(y)| = 1 (as otherwise, σ−1(y) would contain an edge, but this contradicts the fact
that σ is an endomorphism of X). Thus, σ is injective, implying that σ is bijective by the finitness of X. And the bijective
endomorphism of a finite tree is its automorphism (again, because it induces an injective self-map on E(X)). We will use
this observation in proving the following corollary.

Corollary 3.1. For a permutation σ of V , there exists a tree X ∈ Tr(V ) such that σ is an automorphism of X if and only if
σ has a fixed point, or there is a σ-periodic point with period two, in which case all σ-periodic points have even periods.
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Proof. Theorem 3.1 immediately implies the necessity of the condition, as an automorphism is both a metric and a
linear map. For the sufficiency, Theorem 3.1 ensures that for a map σ ∈ T (V ) with given properties, there exists a tree
X ∈ Tr(V ) such that σ is both metric and linear on X. Since σ is bijective, it is an endomorphism of X. Thus, σ is a linear
endomorphism of X. Hence, by the discussion preceding this proposition, σ is an automorphism of X.

Similarly to Theorem 3.1, we can obtain a complete description of the dynamical structure of tree endomorphisms.

Proposition 3.2. Let n = |V | ≥ 3. For a map σ ∈ T (V ), there exists a tree X ∈ Tr(V ) such that σ is an endomorphism of
X if and only if σ satisfies one of the following conditions:

1. fixσ 6= ∅ and |perσ| ≥ 2;

2. there exists a σ-periodic point with period two, all σ-periodic points have even periods, and |perσ| ≥ 3.

Proof. Necessity. Suppose σ has a fixed point, say u ∈ fixσ. Then its neighborhood NX(u) is a non-empty (as n ≥ 3)
σ-invariant set. Therefore, NX(u) contains a σ-periodic point different from u. Thus, in this case, |perσ| ≥ 2.

Next, assume that fixσ = ∅. As σ is an endomorphism, it is a metric map. Hence, Theorem 3.1 implies that there is a
σ-periodic point with period two, and all σ-periodic points have even periods. Moreover, if u ∈ V (X) is a σ-periodic point
with period two, then the set (NX(u) ∪NX(σ(u))) \ {u, σ(u)} is non-empty (as n ≥ 3) and σ-invariant. Hence, σ must have
at least one additional periodic point other than u, σ(u).

Sufficiency. First, suppose that σ has a fixed point and |perσ| ≥ 2. Let u0 ∈ fixσ and v0 ∈ perσ \ {u0}. Consider the
restriction σ0 = σ|orbσ(v0) of σ to the orbit orbσ(v0). It is clear that σ0 is a cyclic permutation of orbσ(v0).

Consider a σ-invariant set S =
⋃+∞
n=1 σ

−n(u0) and the map κ : S → N ∪ {0}, where κ(x) = min{k ∈ N ∪ {0} : σk(x) = u0}.
Of course, κ(u0) = 0. Now consider a graph X on V with the edge set

E(X) = {u0x : x ∈ V \ S} ∪ {xσ−κ(x)
0 (v0) : x ∈ S \ {u0}}.

It is easy to see that X ∈ Tr(V ). We claim that σ is an endomorphism of X. To show this, we must consider two types
of edges in X. For the edges of the from u0x ∈ E(X) with x /∈ S, we have σ(u0) = u0 and σ(x) /∈ S (as otherwise, σ(x) ∈ S
would imply x ∈ S by the definition of the set S). Thus, σ(u0)σ(x) ∈ E(X) is an edge. Similarly, for the edges of the form
xσ
−κ(x)
0 (v0) ∈ E(X) with x ∈ S \ {u0}, we observe that κ(σ(x)) = κ(x)− 1. Thus, the vertex

σ(σ
−κ(x)
0 (v0)) = σ

−κ(x)+1
0 (v0) = σ

−(κ(x)−1)
0 (v0) = σ

−κ(σ(x))
0 (v0)

is adjacent to the vertex σ(x). This proves the proposition in the case where fixσ 6= ∅.
Now assume that σ satisfies the second condition. We follow a similar approach to the proof of the implication 1 ⇒ 4

in Theorem 3.1, but in a slightly modified way. First, consider the partition perσ =
⊔k
i=1 orbσ(ui) of perσ into the orbits of

σ-periodic points ui, 1 ≤ i ≤ k. Without loss of generality, we can assume that | orbσ(u1)| = 2. Now for x ∈ V , put

κ(x) = min{m ∈ N ∪ {0} : σm(x) ∈ {u1, . . . , uk}}.

Then we obtain a well-defined map κ : V → N ∪ {0}.
Now partition the set V into two disjoint sets A = {x ∈ V : κ(x) is odd} and B = {x ∈ V : κ(x) is even}. Consider a

graph X on V with the edge set
E(X) = {u1x : x ∈ A} ∪ {σ(u1)x : x ∈ B}.

One can easily observe that X ∈ Tr(V ) is a bi-star. Moreover, σ is an endomorphism of X. Indeed, for an edge of the form
u1x ∈ E(X) with x ∈ A, it holds κ(σ(x)) = κ(x) − 1. Hence, σ(x) ∈ B implying that σ(u1) is adjacent to σ(x). A similar
argument works for the edges of the form σ(u1)x ∈ E(X) with x ∈ B.

Finally, we provide two examples of maps σ which satisfy each of the two conditions from Proposition 3.2, and construct
the corresponding trees X for them.

Example 3.2. 1. Consider a set V = {1, . . . , 9} and its self-map σ =

(
1 2 3 4 5 6 7 8 9
1 1 2 2 1 7 8 6 8

)
. It is evident that

1 is a fixed point for σ, and perσ = {1, 6, 7, 8}. Hence, σ satisfies the first condition from Proposition 3.2, implying that
there exists a treeX ∈ Tr(V ) with σ being an endomorphism onX. Let us construct thisX. In the setting of the proof of
sufficiency in Proposition 3.2, let u0 = 1 and v0 = 6. Also, S =

⋃+∞
n=1 σ

−n(u0) = {1, 2, 3, 4, 5}. Further, we have κ(1) = 0,
κ(2) = κ(5) = 1, and κ(3) = κ(4) = 2. Thus, the edge set of X is E(X) = {16, 17, 18, 19, 28, 58, 37, 47} (see Figure 3.2).
One can check by hand that σ is indeed an endomorphism of X.
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4 7 1 8 5

3 26 9

Figure 3.2: The tree X for the first map σ from Example 3.2.

2. Again, let V = {1, . . . , 9}, but now σ =

(
1 2 3 4 5 6 7 8 9
2 1 2 2 4 7 8 9 6

)
. It is clear that 1 is a σ-periodic point with

period two, and perσ = {1, 2, 6, 7, 8, 9}. Therefore, σ satisfies the second condition from Proposition 3.2. Thus, again,
there is a tree X ∈ Tr(V ) with σ being an endomorphism on X. Let us construct this X. In the setting of the proof

of sufficiency in Proposition 3.2, let u1 = 1 and u2 = 6. Also, we have κ =

(
1 2 3 4 5 6 7 8 9
0 1 2 2 3 0 3 2 1

)
. Thus,

A = {x ∈ V : κ(x) is odd} = {2, 5, 7, 9} and B = {x ∈ V : κ(x) is even} = {1, 3, 4, 6, 8}. The corresponding bi-star
X has the edge set E(X) = {12, 13, 15, 17, 19, 24, 26, 28} (see Figure 3.3). One can verify by hand that σ is indeed an
endomorphism of X.

7 8

9
6

3

5

2

5

1

4

Figure 3.3: The tree X for the second map σ from Example 3.2.
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