
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 14 (2024) 50–57
DOI: 10.47443/dml.2024.112

Research Article

On the eigenvalues of the distance matrix of graphs with given number of pendant vertices

Shariefuddin Pirzada1,∗, Ummer Mushtaq1, Yilun Shang2

1Department of Mathematics, University of Kashmir, Srinagar, India
2Department of Computer and Information Sciences, Northumbria University, Newcastle, UK

(Received: 19 May 2024. Received in revised form: 16 August 2024. Accepted: 2 September 2024. Published online: 11 October 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a simple connected graph with vertices v1, v2 . . . , vn. The distance matrix of G, denoted by D(G), is the n×n matrix
whose (i, j)th element is equal to d(vi, vj) (the length of a shortest path between vi and vj). Let P(n, r) be the family of all
connected graphs of order n having r pendant vertices. In this paper, we obtain the distance spectrum of various subfamilies
of P(n, r), like pineapple graphs, kite graphs, double star graphs, etc. We also determine the graphs with the largest and
smallest spectral radii belonging to these families. Finally, we give a lower bound for the smallest distance eigenvalue of
certain kite graphs in terms of minimum transmission.
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1. Introduction

Let G = (V,E) be a simple graph with the vertex set V (G) and the edge set E(G). The order of G is the number of vertices
of G and the size of G is the number of edges of G. Let dG(v) be the degree of v, which is defined as the number of edges
incident with v. We also write dv if the underlying graph is obvious. We use the notation N(v) = {u ∈ V (G) | uv ∈ E(G)} to
denote the neighborhood of v ∈ V (G). By convention,Kn represents the complete graph with order n andK1,n−1 represents
the star graph with order n. We denote by Ka,b the complete bipartite graph with parts V1 and V2 such that |V1| = a and
|V2| = b. We refer readers to [12] for other related notations. Given two vertices u, v ∈ V (G), the distance between them is
defined as the length of a shortest path between them. We use the notation duv to represent this distance. The maximum
distance between any pair of vertices in G is the diameter of G, and is denoted as d(G). The distance matrix of G, denoted
as D(G), is the n×n matrix whose (i, j)th element is equal to d(vi, vj). We note that D(G) is real symmetric matrix. Hence
all its eigenvalues are real [6]. We denote the eigenvalues of the distance matrix as ρ1 ≥ ρ2 ≥ · · · ≥ ρn. The distance
spectral radius ρ(G) = ρG of G is the largest eigenvalue of the distance matrix D(G). The transmission TrG(v) of a vertex
v is defined to be the sum of the distances from v to all the vertices in G, that is,

TrG(v) =
∑

u∈V (G)

duv.

For any vertex vi ∈ V (G), the transmission TrG(vi) is called the transmission degree, shortly denoted by Tri or Tr(vi) and
the sequence {Tr1, T r2, . . . , T rn} is called the transmission degree sequence of the graph. An independent set in a graph
is a set of vertices such that no two vertices in the set are adjacent. The size of largest independent set in a graph is called
the independence number of the graph. A star independent set is a star induced subgraph. This means all the vertices
in this independent set are adjacent to some common vertex outside the independent set, called the central vertex. We
use the notation mD[a, b] to denote the number of eigenvalues of D in the interval [a, b], counted with their multiplicities.
The inertia of a matrix M is the triple of integers (n+(M), n0(M), n−(M)), where n+(M), n0(M) and n−(M) denote the
number of positive, 0 and negative eigenvalues of M , respectively. If det(M) = 0, we call M singular; otherwise, we call M
non-singular.

Extensive research has been conducted on the spectrum of the distance matrix that was initially investigated in 1971
by Graham and Pollack [9] as part of their study on a data communication problem, see the survey [1]. Our focus will be
to investigate the distance spectrum of the connected graphs of order n and having r pendant vertices that belong to the
family P(n, r). We will consider the subfamilies of P(n, r) which are defined on the next page.
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Figure 1.1: Pineapple graph K3
4 .

Pineapple graph Kr
n. The pineapple graphKr

n is obtained by appending r pendant edges to a single vertex of a complete
graph Kn−r.

Kite graph PKw,l. The kite graph PKw,l is a graph obtained from a clique Kw and a path Pl by adding an edge between
a vertex from the clique and an end vertex from the path.

Double star T (a, b). Let Sa+1 and Sb+1 be respectively the stars on a + 1 and b + 1 vertices with a, b ≥ 1. Let T (a, b) be
the tree obtained by joining the vertex of degree a in Sa+1 and the vertex of degree b in Sb+1 by an edge. This tree is called
the double star.

The rest of the paper is organized as follows. In Section 2, we obtain the distance spectrum of the kite graph Kr
n. In

Section 2, we also determine the graphs having the smallest and the largest spectral radius among the connected graphs
of order n, containing a cycle of length n − r and r pendant vertices. We obtain the distance spectrum of the double star
T (a, b) in Section 3. In Section 4, we obtain the distance spectrum of the Kite graph PKw,2 and find the lower bound
for the smallest eigenvalue ρn of PKw,2 in terms of minimum transmission. We conclude the paper by emphasizing the
significance of our findings in Section 5.

2. Distance spectrum of pineapple graphs Kr
n

Bose et al. [4] demonstrated that the pineapple graph Kr
n has the minimum distance spectral radius among all n vertex

graphs having r pendant vertices, where r 6= n−2. In this section, we obtain the distance spectrum of the pineapple graph
Kr

n and find the distribution of its eigenvalues in the interval [−2, 0].

Definition 2.1. Let M be an n× n complex matrix delineated in the block form as given below:

M =


M11 M12 . . . M1t

M21 M22 . . . M2t

. . . .

. . . .
Mt1 Mt2 . . . Mtt


,

(2.2)

where n = n1+n2+· · ·+nt andMij is a matrix block with dimension ni×nj for 1 ≤ i, j ≤ t. Let bij be the sum of all elements
in Mij divided by the number of rows. In other words, it is the average row sum of Mij , where 1 ≤ i, j ≤ t. B(M) = (bij) (or
B) is referred to as the quotient matrix of M . If Mij has a constant row sum for all i and j, that is, Mijeij = bijeij , then
we say B is the equitable quotient matrix, where eij = (1, 1, . . . , 1)T . In [20], it was proved that if M is defined as in (2.2)
such that Mij = sijJni,nj

for i 6= j, and Mii = siiJni,ni
+ piIni

. Then the equitable quotient matrix of M is B = (bij) with
bij = sijnj , if i 6= j and bii = siini + pi. Moreover,

σ(M) = σ(B) ∪
{
p
[n1−1]
1 , . . . , p

[nt−1]
t

}
.
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Let P(n, r) be the set of all connected graphs of order n and having r pendant vertices. We observe that P(1, 0) =

{K1}, P(3, 1) = P(2, 0) = P(2, 1) = φ, P (2, 2) = {K2} and P (n, n) = φ for n ≥ 3. Therefore, we consider n ≥ 3 and
0 ≤ r ≤ n − 1. Let Kr

n be the graph obtained by attaching r pendant vertices to any one vertex of Kn−r. For example,
K0

n = Kn and Kn−1
n = K1,n. Further, we let K(n, r) be the set of graphs in P(n, r) such that all r pendant vertices are

adjacent to a vertex of degree n− 1. We note that Kr
n ∈ K(n, r). An example of a graph Kr

n, with n = 7 and r = 3 is shown
in Figure 1.1. The following lemmas will be used in the sequel.

Lemma 2.1. [11]. Let G be a connected graph on n vertices. If S = v1, v2, . . . , vp induces a clique of G with N(vi) \ S =

N(vj) \ S for 1 ≤ i, j ≤ p. Then −1 is an eigenvalue of D(G) with multiplicity at least p− 1.

Lemma 2.2. [11]. Let G be a connected graph. If G contains a star independent set of order p, then −2 is an eigenvalue
of D(G) with multiplicity at least p− 1.

The following theorem gives the distance spectrum of Kr
n.

Theorem 2.1. (i) If n 6= 2, 3 and 1 ≤ r < n− 1, the distance spectrum of Kr
n is {−2[r−1],−1[n−r−2], x, y, z}, where x, y and

z are the zeros of the polynomial

f(x) = x3 − (n+ r − 4)x2 − (2nr + 3n− 2r2 − 2r − 5)x+ (r2 + 2r + 2− nr − 2n).

(ii) If r = n− 1, the distance spectrum of Kr
n is

{
−2[n−2], 2n−4±

√
(2n−4)2+4n−1

2

}
.

Moreover, for n ≥ 2, Kr
n has only one positive distance eigenvalue.

Proof. (i) For n = 2, the only possible connected graph is K2. The distance spectrum of this graph is {1,−1}. For r = 3,
the only possible connected graph with at least one pendant vertex is the path P3, and the distance spectrum of P3 is
{−2, 1±

√
3}.

For n ≥ 4 and r < n− 1, let V = {v1, v2, . . . , vn} be the vertex set of Kr
n. Assume that {v1, v2, . . . , vn−r} is the set of vertices

of the induced subgraph Kn−r of Kr
n and vertex v1 is of degree n − 1. Then, the set S = {v2, v3, . . . , vn−r} induces a clique

of Kr
n, satisfying N(vi) \ S = N(vj) \ S for 2 ≤ i, j ≤ n − r. Therefore, by Lemma 2.1, −1 is an eigenvalue of D(Kr

n) with
multiplicity at least n − r − 2. Similarly, the r pendant vertices of Kr

n form a star independent set and share the same
neighborhood, namely vertex v1. Therefore, by Lemma 2.2, −2 is an eigenvalue of multiplicity at least r−1. The remaining
three eigenvalues are the eigenvalues of the following equitable quotient matrix

B =

0 n− r − 1 r
1 n− r − 2 2r
1 2n− 2r − 2 2r − 2

 ,

which is obtained from the distance matrix of Kr
n.

By direct computation, we see that the characteristic polynomial of B is

f(x) = x3 − (n+ r − 4)x2 − (2nr + 3n− 2r2 − 2r − 5)x+ (r2 + 2r + 2− nr − 2n).

As seen above, −1 and −2 are the distance eigenvalues of Kr
n with multiplicities n − r − 2 and r − 1, respectively. So

the possible positive eigenvalues are the zeros of the polynomial f(x) = x3 − (n + r − 4)x2 − (2nr + 3n − 2r2 − 2r − 5)x +

(r2 + 2r + 2− nr − 2n). We can see that there is only one change in signs of the coefficients of f(x), when n ≥ 5. Hence by
Descarte’s rule of signs, there is exactly one positive zero of the polynomial f(x). Therefore, Kr

n has exactly one positive
eigenvalue. This completes the proof of the first part.
(ii) For r = n− 1, Kr

n is the star graph Sn. In this case, the n− 1 pendant vertices of Kr
n form an independent set with the

same neighborhood. Therefore, by Lemma 2.2, −2 is an eigenvalue of Kr
n with multiplicity at least n − 2. The remaining

two eigenvalues are eigenvalues of the equitable quotient matrix

B′ =

(
0 n− 1
1 2n− 4

)
,

where B′ is obtained from the distance matrix of Kn−1
n .

It is easy to see that the eigenvalues of B′ are 2n−4±
√

(2n−4)2+4n−1
2 . Hence the complete distance spectrum of Kn−1

n is{
−2[n−2], 2n−4±

√
(2n−4)2+4n−1

2

}
. It can be easily seen that 2n−4−

√
(2n−4)2+4n−1

2 < 0 for all n ∈ N. Consequently, in this case
as well, Kr

n has only one positive eigenvalue.
Hence, from each of the above cases, we see that Kr

n has precisely one positive eigenvalue.
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The following theorem completely describes the distance spectrum of Kr
n for r < n− 1 and n ≥ 5.

Theorem 2.2. Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the distance spectrum of Kr
n, where r < n − 1. Then n + r − 3 < ρ1 < 2n − 3 and

−1 < ρ2 < 0. Moreover, for n ≥ 5, mD(Kr
n)[−2, 0] = n− 2 or n− 1.

Proof. From Theorem 2.1, the distance spectrum of Kr
n is {−2[r−1],−1[n−r−2], x1, x2, x3}, where x1 ≥ x2 ≥ x3 are the zeros

of the polynomial

f(x) = x3 − (n+ r − 4)x2 − (2nr + 3n− 2r2 − 2r − 5)x+ (r2 + 2r + 2− nr − 2n).

Now, for 0 ≤ r < n, we have f(0) = r2+2r+2−nr−2n < 0 and f(−1) = −1−n−r+4+2nr+3n−2r2−2r−5+r2+2r+2−nr−2n =

nr − r2 − r ≥ 0.
Using the intermediate value theorem, it follows that at least one zero of f(x), say x2, lies in the interval [−1, 0). Since

x1 + x2 + x3 = n + r − 4 and −1 ≤ x2 < 0, therefore n + r − 4 < x1 + x3 < n + r − 3. Also the maximum row sum of the
matrix B is 2n− 3. So x1 < 2n− 3. This implies that x3 > −n+ r − 1.

From Theorem 2.1, we see that −2 and −1 are the distance eigenvalues of Kr
n with multiplicities r − 1 and n − r − 2,

respectively. Also, as seen above, there is at least one eigenvalue of Kr
n in the interval [−1, 0). As Kr

n has only one positive
eigenvalue, so [−2, 0] contains either n− 2 or n− 1 eigenvalues of Kr

n.

Remark 2.1. We have established that the distance matrix ofKr
n has one positive eigenvalue and n−1 negative eigenvalues.

Consequently, the inertia of D(Kr
n) is (1, 0, n − 1). This indicates that the distance matrix of Kr

n is non-singular, with a
positive determinant when n is odd and a negative determinant when n is even.

Observation 1. Suppose the connected graph G has an edge e = uv satisfying G′ = G− e being connected. The distance
matrix of G− e is denoted by D′. Deleting the edge e will not generate shorter paths than those in G. Thus, dij ≤ d′ij for all
i, j ∈ V . We have 1 = duv < d′uv. In view of the Perron-Frobenius theorem, ρ(G) < ρ(G−e). Furthermore, for any spanning
tree T of G, ρ(G) ≤ ρ(T ) holds.

With this observation and the following lemma, we find the graph with the maximum distance spectral radius among
all graphs having r pendant vertices and containing a cycle of length n− r.

Lemma 2.3. [20] Let G be a graph with a clique Ks of order (s ≥ 2) and u and v be two vertices on the clique with p and
q pendant vertices respectively, where deg(v) = q + s− 1 in G. If G′ = G− vw + uw, where w is a pendant vertex adjacent
to v in G, then ρ(G) > ρ(G′) for p ≥ q ≥ 1.

Let G be a connected graph of order n with r pendant vertices. Let G contain at least one cycle, say C, of length n− r.
Clearly, this cycle C of length n− r is the cycle of the largest length, since G contains r pendant vertices. Let E(H) be the
set of pendant edges of G. From G, we delete the edges of E(G−H − C), that is, we delete those non-pendant edges of G
which are not in C. The resulting graph, denoted by Cr

n, consists of the cycle of length n−r and r pendant edges. In Figure
2.1, we have obtained C3

9 of the first graph in two ways. Note that the pendant vertices are adjacent on the same vertices
as these are in the original graph and C3

9 consists of the cycle C6 with three pendant edges as these are in the original
graph.
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Figure 2.1: The C3
9 graphs of the graph G.

Now, we show that the spectral radius of G lies between the spectral radii of Cr
n and Kr

n.

Theorem 2.3. Let G be a connected graph of order n with r pendant vertices. If G has a cycle of length n − r, then
ρ(Cr

n) > ρ(G) > ρ(Kr
n).
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Proof. From G, delete all the edges that do not shorten the length of the largest cycle and keep G connected. Obviously,
after the deletion of all such edges, the resulting graph is Cr

n. Then, from Observation 1, we have ρ(Cr
n) > ρ(G).

For the other part, we add all possible edges between the non-adjacent vertices of the cycle so that the cycle becomes
a clique Kn−r. Next, we repeatedly perform the transformation of deleting the pendant edges and adding them on some
fixed vertex of the clique, we just formed, so that the final graph is Kr

n. Now, using Lemma 2.3 and Observation 1, we get
ρ(G) > ρ(Kr

n). This completes the proof.

3. Distance spectrum of T(a, b)

The double star graph 2Sn is a graph formed by duplicating the star graph Sn and connecting two vertices of degree n with
an edge. Collins [5] derived the characteristic polynomial of 2Sn. Extending this concept, we define the double star graph
T (a, b) as the union of two arbitrary star graphs Sa and Sb, with their central vertices joined by an edge. We may note that
2Sn can be obtained from T (a, b) by simply putting a = b = n. Let Tn be the family of double stars with a + b = n − 2 and
a, b ≥ 1, that is, Tn = {T (a, b) : a+ b = n− 2, a, b ≥ 1}. The following theorem gives the distance spectrum of T (a, b).

Theorem 3.1. For the tree T (a, b) with a + b = n − 2, the distance spectrum is {−2n−4, x1, x2, x3 and x4}, where x1, x2, x3
and x4 are the zeros of the polynomial

P (x) = x4 − 2(a+ b− 2)x3 − (5ab+ 9a+ 9b− 3)x2 − 4(ab+ 3a+ 3b+ 1)x− 4(a+ b+ 1).

For n ≥ 3, T (a, b) has only one positive distance eigenvalue.

Proof. Let V (Sa+1) = {u, u1, u2, . . . , ua} and V (Sb+1) = {v, v1, . . . , vb} be respectively the vertex set of the stars Sa+1 and
Sb+1. Assume the vertices u and v are central vertices of the stars Sa+1 and Sb+1, respectively . Then the vertex set of
T (a, b) is V (T (a, b)) = V (Sa+1) ∪ V (Sb+1) = {v, v1, . . . , vb, u, u1, . . . , ua}. By appropriately labelling the vertices of T (a, b), it
is possible to write the distance matrix of T (a, b) in the form

D(T (a, b)) =


0 J1×a J1×1 2J1×b

Ja×1 (−2I + 2J)a×a 2Ja×1 3Ja×b
J1×1 2J1×a 0 J1×b
2Jb×1 3Jb×a Jb×1 (−2I + 2J)b×b

 .

The set S = {u1, u2, . . . , ua} forms a star independent set with a common neighborhood outside S. According to Lemma
2.2, this ensures that −2 is an eigenvalue with a multiplicity of at least a − 1. Similarly, the set S′ = {v1, v2, . . . , vb} is an
independent set with a shared neighborhood outside S′, so again by Lemma 2.2, −2 is an eigenvalue with a multiplicity of
at least b− 1. Thus, the total multiplicity of −2 is at least a+ b− 2 = n− 4. The remaining eigenvalues are the eigenvalues
of the following equitable quotient matrix B obtained from D(T (a, b))

B =


0 a 1 2b
1 2a− 2 2 3b
1 2a 0 b
2 3a 1 2b− 2

 .

It can be seen by simple calculations that the characteristic polynomial of B is

P (x) = x4 − 2(a+ b− 2)x3 − (5ab++9a+ 9b− 3)x2 − 4(ab+ 3a+ 3b+ 1)x− 4(a+ b+ 1).

From the above discussion, we note that −2 is the distance eigenvalue of T (a, b) with multiplicity n− 4. So the possible
positive eigenvalues are the zeros of the polynomial P (x) = x4 − 2(a+ b− 2)x3 − (5ab++9a+ 9b− 3)x2 − 4(ab+ 3a+ 3b+

1)x− 4(a+ b+ 1). By Descarte’s rule of signs, there is only one change in the signs for the coefficients of P (x) when n ≥ 3.
Thus, there is exactly one positive zero of the polynomial P (x). Therefore, T (a, b) has exactly one positive eigenvalue. Note
that this positive eigenvalue is in fact the distance spectral radius of T (a, b).

The spectrum of T (a, b) is completely characterized by the following theorem.

Theorem 3.2. Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the distance spectrum of T (a, b). Then, for a > b > 2 we have 2b+ 2a− 0.5 < ρ1 <

3a+ 2b+ 1, − 0.5 < ρ2 < 0, − 1 < ρ3 < −0.5, ρi = −2 for i = 4, 5, . . . , n− 1 and −3a < ρn < −3.

Proof. From Theorem 3.1, clearly −2 is an eigenvalue of D(T (a, b) of multiplicity n−4 and the remaining four eigenvalues
are the zeros of the polynomial

P (x) = x4 − 2(a+ b− 2)x3 − (5ab+ 9a+ 9b− 3)x2 − 4(ab+ 3a+ 3b+ 1)x− 4(a+ b+ 1).
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Now, we use the intermediate value property to locate these four zeros of P (x). We have

P (0) = −4(a+ b+ 1) < 0,

P (−0.5) = 0.0625 + 0.25(a+ b− 2)− 0.25(5ab+ 9a+ 9b− 3) + 2ab+ 6a+ 6b+ 2− 4(a+ b+ 1)

= −0.1875a+ 0.75ab− 1.6875 > 0, for ab ≥ 4,

P (−1) = 1 + 2a+ 2b− 4− 5ab− 9a− 9b+ 3 + 4ab+ 12a+ 12b+ 4− 4a− 4b− 4

= a+ b− ab < 0,

P (−3) = 81 + 54a+ 54b− 108− 45ab− 81a− 81b+ 9 + 12ab+ 36a+ 36b+ 12− 4a− 4b− 4

= −10 + 5a+ 5b− 33ab < 0,

P (−3a) = 135a4 + 9a3b− 189a3 − 69a2b+ 63a2 + 36ab+ 8a− 4b− 4 > 0.

Using the intermediate value theorem, we conclude that there exists at least one zero of the polynomial P (x) in each
of the intervals (−0.5, 0), (−1,−0.5) and (−3a,−3). As the polynomial p(x) has exactly three negative zeros, so there exists
exactly one zero of P (x) in each of these intervals. Therefore, if x1 ≤ x2 ≤ x3 ≤ x4 are the zeros of P (x), then −0.5 < x1 <

0,−1 < x2 < −0.5 and −3a < x3 < −3. Since the sum of these zeros is 2(a + b − 2), so 2a + 2b − 0.5 < x4 < 3a + 2b + 1

. Using the fact that the zeros of the characteristic polynomial are the eigenvalues of the corresponding matrix, we have
2b+ 2a− 0.5 < ρ1 < 3a+ 2b+ 1,−0.5 < ρ2 < 0,−1 < ρ3 < −0.5, ρi = −2 for i = 4, 5, . . . , n− 1 and −3a < ρn < −3.

Remark 3.1. We have demonstrated that the distance matrix of T (a, b) has exactly one positive eigenvalue and n−1 negative
eigenvalues. Therefore, the inertia ofD(T (a, b)) is (1, 0, n−1). This implies that the distance matrix of T (a, b) is non-singular,
with a positive determinant when n is odd and a negative determinant when n is even.

4. Distance spectrum of the Kite graph PKw,2

Definition 4.1. For integers w, l, n with w + l = n, let PKw,l be the graph obtained from the complete graph Kw and the
path Pl by adding an edge between any vertex of Kw and a pendant vertex of Pl. We call PKw,l as the Kite graph. [7, 19].
We note that PKw.l ∈ P(n, r) and K1

n = PKn−1,1. As an example, the graph PK5,3 is shown in Figure 4.1.

Figure 4.1: Kite graph PK5,3.

When l = 1, PKw,l represents the Pineapple graph K1
n. The distance spectrum of this graph has been extensively

discussed in Theorem 2.1. Now, we examine the distance spectrum of PKw,l for l = 2. The subsequent lemma provides the
distance spectrum of PKw,2.

Lemma 4.1. Forw+2 = n, the distance spectrum of PKw,2 is {−1[n−4], a, b, c, d},where a, b, c, d are the zeros of the polynomial

f(x) = x4 − (w − 2)x3 − (14w − 8)x2 − (22w − 12)x− (8w − 4).

Moreover, for w ≥ 2, D(PKw,2) has only one positive distance eigenvalue.

Proof. Let V = {v1, v2, . . . , vw} be the vertex set of the complete graphKw and U = {u1, u2}, where w+2 = n, be the vertex
set of the path P2. Suppose that an edge vwu1 is added between the pendant vertex u1 of P2 and the vertex vw of Kw, so
that the resulting graph is PKw,2. We label the rows and columns of D(PKw,2) in the order v1, . . . , vw, u1 and u2, so that
the distance matrix of PKw,2 has the form

D(PKw,2) =


0 J1×w−1 J1×1 2J1×1

Jw−1×1 (−I + J)w−1×w−1 2Jw−1×1 3Jw−1×1
J1×1 2J1×w−1 (−I + J)1×1 J1×1
2J1×1 3J1×w−1 J1×1 (−I + J)1×1

 .
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The set of vertices T = {v1, v2, . . . , vw−1} induces a clique of PKw,2 and the vertices of T share the same neighborhood
outside T . From Lemma 2.1, it follows that −1 is an eigenvalue of multiplicity at least n − 4. The remaining eigenvalues
are the eigenvalues of the matrix B, where

B =


0 w − 1 1 2
1 w − 2 2 3
1 2w − 2 0 1
2 3w − 3 1 0

 .

The characteristic polynomial of this matrix is the determinant of B − xI,∣∣∣∣∣∣∣∣
−x w − 1 1 2
1 (w − 2)− x 2 3
1 2w − 2 −x 1
2 3w − 3 1 −x

∣∣∣∣∣∣∣∣ = x4 − (w − 2)x3 − (14w − 8)x2 − (22w − 12)x− (8w − 4).

We now prove the second part of the lemma. Since −1 is an eigenvalue of D(PKw,2) of multiplicity n − 4, so the possible
positive eigenvalues are the zeros of the polynomial

f(x) = x4 − (w − 2)x3 − (14w − 8)x2 − (22w − 12)x− (8w − 4).

For w ≥ 2, we observe that there is only one change in the signs of f(x). Therefore, by Descarte’s rule of sign, f(x) has
exactly one positive zero. This implies that D(PKw,2) has exactly one positive eigenvalue, for w ≥ 2.

The following theorem gives the lower bound for the smallest distance eigenvalue of D(PKw,2) in terms of minimum
transmission.

Theorem 4.1. Let w be an integer with w ≥ 4 and n = w + 2. The smallest distance eigenvalue of PKw,2 satisfies ρn >

−Trmin, where Trmin is the minimum transmission of PKw,2.

Proof. From Lemma 4.1, for w + 2 = n, the distance spectrum of PKw,2 is {−1[n−4], a, b, c, d}, where a, b, c, d are the zeros
of the polynomial

f(x) = x4 − (w − 2)x3 − (14w − 8)x2 − (22w − 12)x− (8w − 4).

To find a lower bound for ρn(PKw,2), we first locate the three negative zeros of f(x). We have

f(0) = −(8w − 4) < 0, for w ≥ 2,

f(−0.7) = 0.2401 + 0.343w − 0.646− 6.86w + 3.92 + 15.4w − 8.4− 8w + 4

= 0.883w − 0.9259 > 0, for w ≥ 2,

f(−1) = 1 + w − 2− 14w + 8 + 22w − 12− 8w + 4

= w − 1 > 0, for w ≥ 2,

f(−2) = 16 + 8w − 16− 56w + 32 + 44w − 24− 8w + 4

= −12w + 12 < 0, for w ≥ 3,

f(−n) = n4 + (w − 2)n3 − (14w − 8)n2 + (22w − 12)n− 8w + 4

= n4 + (n− 4)n3 − 14(n− 2)n2 + 8n2 + 22(n− 2)n− 12n− 8(n− 2) + 4

= 2n4 − 18n3 + 58n2 − 64n+ 20 > 0, for n ≥ 6.

By using the intermediate value property, we see that there exists exactly one zero of f(x) in each of the intervals
(−0.7, 0), (−2,−1) and (−n,−2). Therefore, −0.7 < ρ2 < 0,−2 < ρn−1 < −1 and −n < ρn < −2. Also, the transmis-
sion of the vertices of PKw,2 is n or n+ 2 or 2n− 4 or 3n− 6, the vertex of Kw adjacent to the pendant vertex of P2 has the
minimum transmission n. Thus, we have −Trmin = −n < ρn(PKw,2) < −2.

Remark 4.1. We have determined that the distance matrix ofPKw,2 has precisely one positive eigenvalue, with the remaining
n− 1 eigenvalues being negative. Therefore, the inertia of D(PKw,2) is (1, 0, n− 1). This reveals that the distance matrix of
PKw,2 is non-singular, exhibiting a positive determinant when n is odd and a negative determinant when n is even.
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5. Conclusion

We have computed the distance spectrum of various graph families with r pendant vertices. The upper and lower bounds for
the smallest and the largest eigenvalues of these families have also been obtained. It is generally recognized that locating
the extremal graphs that correspond to these bounds is a challenging task. Therefore, it would be interesting to explore
and examine the issue of identifying the extremal cases of the bounds presented in this paper. Further it will be interesting
to investigate distance matrix on the basis of some recent work on spectra of distance Laplacian matrix [1–3,8,10,13–18].
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