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Abstract

Given graphs H and F , the generalized Turán number ex(n,H, F ) is the largest number of copies of H in n-vertex F -free
graphs. This paper is concerned with the case when either H or F is a matching. Several asymptotic and exact results are
obtained.
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1. Introduction

A fundamental result in extremal graph theory is the theorem of Turán [15] that determines the largest number of edges
in n-vertex Kk-free graphs. The analogous problems with other forbidden graphs have been widely studied. Recently,
a more general problem has attracted a lot of attention under the name generalized Turán problem. Given graphs H
and G, let N (H,G) denote the number of copies of H in G. Let ex(n,H, F ) denote the largest N (H,G), where G is an
n-vertex F -free graph. After several sporadic results, the systematic study of this function has been initiated by Alon and
Shikhelman [1]. In this paper, we study this function in the case when either H or F is a matching Mk, consisting of k
independent edges. Let us highlight some of the results of the present paper. Gerbner [9] showed that if F is not a forest,
then ex(n,Mt, F ) = (1 + o(1))ex(n, F )t/t!. We extend this to trees and characterize when forests have this property. We
obtain exact results when stars or paths are forbidden.

In the case of forbidden matchings, the order of magnitude is known, and it is not hard to see that the extremal graph
can be chosen at most c(s) ways for some constant c(s) that depends on s but not on n. We determine the unique extremal
graph in the case when the vertex cover number of H (the smallest number of vertices incident to each edge) is at most
s− 1 and n is large enough.

Section 2 deals with the case of counting matchings and Section 3 deals with the case of forbidding matchings.

2. Counting matchings

Proposition 2.1. For any positive integer t and any tree F , we have ex(n,Mt, F ) = (1 + o(1))ex(n, F )t/t!.

Proof. The upper bound is obvious, in an n-vertex F -free graph G we can count copies of Mt by picking t independent
edges, each at most ex(n, F ) ways. We count each copy of Mt exactly t! times.

Let c := lim sup ex(n,F )
n . Let ε > 0. Then there is m such that ex(m,F ) ≥ (c − ε)m, let Gm be an m-vertex F -free graph

with ex(m,F ) edges. For every sufficiently large n, we have that bn/mc copies of Gm is F -free with at least

(c− ε)mbn/mc ≥ (c− ε)n− cm ≥ (c− 2ε)n

edges and maximum degree at most m− 1. Then we claim that N (Mi, Gm) ≥ (c− 2ε)ini/i!. We prove this by induction on
i. For M1 it is obvious, for Mi+1 we can count the copies by picking Mi, and then an edge from another component. This
can be done at least (c − ε)m(bn/mc − i)(c − 2ε)ini/i! ≥ (c − 2iε)ini(c − 2ε)n ways and we count each Mi+1 exactly (i + 1)

times. We obtained that for any ε > 0, for every sufficiently large n, ex(n,Mt, F ) ≥ (c− 2ε)tnt/t! while ex(n, F ) ≤ cn. This
completes the proof.
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The argument given in Proposition 2.1 also works for the forests where one of the components F1 satisfies the equation
ex(n, F ) = (1 + o(1))ex(n, F1). We show that the above statement does not hold for other forests. First, we need a lemma.

Observe that the upper bound N (Mt, G) ≤ |E(G)|t/t! is asymptotically sharp in the case when the maximum
degree ∆(G) equals o(|E(G)|). Indeed, we pick the edges one by one, and after picking i independent edges, there are at
least |E(G)|−2i∆(G) ways to pick another independent edge. This proves the already mentioned result that ex(n,Mt, F ) =

(1 + o(1))ex(n, F )t/t! if F is not a forest [9]. If |E(G)| is linear, we also have the asymptotically sharp bound if ∆(G) is
sublinear. The following lemma shows that if ∆(G) is also linear, then the upper bound is not asymptotically sharp.

Lemma 2.1. Let t > 1. For every α > 0 and c > 0 there is β > 0 such that the following holds. Let G be an n-vertex graph
with at most cn edges and minimum degree degree at least βn, then N (Mt, G) ≤ (1− α)(cn)t/t!.

Proof. We can count the copies of Mt by picking an edge uv and then t − 1 other edges, independent of uv and from each
other. Each copy of Mt is counted t! times this way. The first edge can be picked at least βn ways such that u has degree at
least βn. In that case, the other edges are not among the edges incident to u, thus there are at most |E(G)| − βn of them.
Therefore, t!N (Mt, G) ≤ βn(|E(G)|−βn)t−1 +(|E(G)|−βn)|E(G)|t−1 ≤ βn(|E(G)−βn)|E(G)|t−2 +(|E(G)|−βn)|E(G)|t−1 =

|E(G)|t − βn2|E(G)|t−2 ≤ (cn)t(1− α) if β is sufficiently small.

Proposition 2.2. Let F be a forest with components F1, . . . , Fk and assume that there exists α > 0 such that for each i ≤ k,
ex(n, Fi) < (1− α)ex(n, F ). Then there exists α′ > 0 such that ex(n,Mt, F ) < (1− α′)ex(n, F )t/t!.

Proof. Let G be an n-vertex F -free graph with N (Mt, G) = ex(n,Mt, F ). If G is F1-free, we are done, since N (Mt, G) ≤
|E(G)|t/t! ≤ ex(n, F1)t/t! < (1− α)tex(n, F )t/t! < (1− α)ex(n, F )t/t!. Consider a copy of F1 in G and let U1 be the set of its
vertices. Let G1 be obtained from G by deleting U1. If there is a copy of F1 in G1, let U2 be the set of its vertices and G2

be obtained from G1 by deleting U2. We repeat this, with Ui being the vertex set of a copy of F1 in Gi−1 (if exists) and Gi
obtained from Gi−1 by deleting Ui. Let m = |V (F )|.

If Gm+1 exists, we found m + 1 vertex-disjoint copies of F1. We apply induction on k. Assume first that k = 2. A copy
of F2 in G would have to intersect each copy of F1, which is impossible, thus G is F2-free and we are done. Assume that
k ≥ 3 and let F ′ be the graph we obtain from F by deleting F1. Then G1 is F ′-free, thus has at most (1− α′′)ex(n, F ′)t/t! ≤
(1− α′′)ex(n, F )t/t! edges for some α′′ > 0, by induction. This completes the proof.

If Gm+1 does not exist, let i be the largest integer such that Gi exists. Then Gi is F1-free and thus it has at most
ex(n− i|V (F1)|, F1) < (1−α)ex(n, F ) edges. Let U = ∪ii=1Ui. The copies ofMt not inside Gi each contain an edge incident to
at least one of the vertices in U . If there are less than β|U |n such edges for some small enough β, then they participate in
an additional β|U |nex(n, F )t−1 < (α−α′)ex(n, F )t/t! copies of Mt for some sufficiently small α′ > 0, completing the proof. If
there are at least β|U |n such edges, then there is a vertex of degree at least βn, thus Lemma 2.1 completes the proof.

Next, we show two simple examples, where we determine ex(n,Mt, F ) for every n. The friendship graph Fn consists of
a vertex of degree n− 1 and a largest possible matching on the other n− 1 vertices.

Proposition 2.3. (i). ex(n,Mt,K2 ∪ P3) = max{N (Mt,K4),N (Mt,Mbn/2c)}.

(ii). ex(n,Mt, 2P3) = max{N (Mt,K5 ∪Mb(n−5)/2c),N (Mt,K4 ∪Mb(n−4)/2c),N (M2, Fn)}.

Note that in (i), it is clear that K4 is better than the other construction if and only if t = 2 and n = 4, 5. In (ii), the
situation is more complicated, but clearly K5 ∪Mb(n−5)/2c) is the best if n is sufficiently large.

Proof. Let G be an n-vertex K2 ∪ P3-free graph. Assume that G contains two independent edges uv and xy. Then each
P3 is inside these four vertices. If there is no P3 in G, we are done, thus let us assume that ux ∈ E(G). Then there are no
edges outside these vertices, hence we are done with the proof of (i).

Let G be an n-vertex 2P3-free graph and v be a vertex of the largest degree in G. If d(v) ≥ 5, then there is no P3 that
does not contain v, thus edges not incident to v form a matching, and G is a subgraph of the friendship graph. If d(v) = 4,
then we can have copies of P3 among the neighbors of v. Then the graph is a subgraph of K5 plus a matching. If d(v) = 3,
then we can have copies of P3 that avoid v but contain two of the neighbors of v. Each of the three neighbors x, y, z of v
can have at most one neighbor in V (G) \ {v, x, y, z}. Let U denote the vertices that are of distance at most 2 from v, then
|U | ≤ 7. The rest of the graph G[V (G) \ U ] forms a matching. If |U | ≤ 5, then we can replace U by a clique to obtain a
subgraph of the claimed extremal graphs. If |U | = 6, then, say, x has a neighbor x′ and y has a neighbor y′ in addition to
v, x, y, z. Then z cannot be adjacent to x or y, as for example xz with xx′ would create a P3 disjoint from vyy′. Similarly,
we cannot have both x′z and xy in the graph, as then y′yx and x′zv would form 2P3. It is easy to check that there are at
most 6 edges, at most 7 copies of M2, and at most 2 copies of M3 inside U . If we replace it by K4 ∪K2, each of these values
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increase. As each copy of Mt intersects U in 0,1,2 or 3 independent edges, the number of copies of Mt increases and we are
done.

Finally, if |U | = 7, then similarly to the previous case, we have edges xx′, yy′, zz′ and we cannot have edges between
x, y, z. Then we have 6 edges, 9 copies of M2 and 3 copies of M3 inside U , it is better to replace them by K5 ∪M1.

If d(v) ≤ 2, then each component is a path or a cycle, and there is at most one component that is not a single edge.
Moreover, that component has at most 5 vertices, thus a subgraph ofK5 andG is a subgraph ofK5∪Mb(n−5)/2c, completing
the proof.

In light of Proposition 2.1, we are interested in exact results. In the case the forbidden graph has chromatic number
at least 3, the following notion helps. We say that a graph H is F -Turán-stable if any n-vertex F -free graph G with
ex(n,H, F ) − o(n|V (H)|) copies of H can be turned into T (n, χ(F ) − 1) by adding and removing o(n2) edges. Here T (n, k)

is the Turán graph, a complete k-partite graph with each part of order bn/kc or dn/ke. The Erdős-Simonovits stability
theorem [3, 4, 14] states that M1 is F -Turán-stable for every F with chromatic number at least 3. Gerbner [10] observed
that the vertex-disjoint union of F -Turán-stable graphs is also F -Turán-stable, thus Mt has this property for every F with
chromatic number at least 3. Gerbner [10] also showed that this implies that ex(n,Mt, F ) = N (Mt, T (n, χ(F )−1)) for every
F with a color-critical edge. Some other exact results that we do not state here are implied by [8].

In the case when the forbidden graph is bipartite, we do not have many exact results even if t = 1. Let us deal with
some forbidden graphs where the case t = 1 is known. We say that a graph G is almost d-regular if either every vertex
has degree d or all but one of the vertices have degree d and the remaining vertex has degree d − 1. It is easy to see that
ex(n, Sr) = |E(G)| for some almost (r − 1)-regular n-vertex graph G.

Theorem 2.1. For any t, r and sufficiently large n, we have ex(n,Mt, Sr) = N (Mt, G) for some almost (r−1)-regular n-vertex
graph G. Moreover, if an n-vertex Sr-free graph G′ is not almost (r − 1)-regular, then N (Mt, G

′) = ex(n,Mt, Sr)− Ω(nt−1).

Note that this theorem does not completely determine ex(n,Mt, Sr), since almost (r − 1)-regular n-vertex graphs may
contain a different number of copies of Mt. For example, consider Cn and n/3 vertex-disjoint copies of K3. The first edge
can be chosen n ways, and the second edge can be chosen n − 3 ways. However, in the union of triangles, the third edge
can be chosen n − 6 ways always. In Cn for some choices of the first two edges, the third edge can be chosen n − 5 ways,
while for each other choice of the first two edges the third edge can be chosen n− 6 ways, thus Cn contains more copies of
M3 than n/3 vertex-disjoint copies of K3.

Proof. We use induction on t, the statement is trivial for t = 1. Consider an Sr-free graph G′. We count the copies of Mt

by picking Mt−1 first, and then an independent edge. Observe that we can pick Mt−1 N (Mt−1, G
′) ways, and then an edge

can be picked among those that are not incident to the 2t− 2 vertices in the matching we picked. This can be done at least
|E(G′)| − (2t− 2)(r − 1) ways.

In an almost (r− 1)-regular graph G, when we pick i independent edges, all but O(1) of the other edges each have that
both of their endpoints are not adjacent to any of the 2i vertices picked earlier. We can pick the edges of an Mi one by one
satisfying the above property. In this way, we obtain all but O(ni−1) copies of Mi. The above property implies that when
we pick the next edge, we always have exactly |E(G) − 2i(r − 2) or |E(G) − 2i(r − 2) + 1 choices, the second possibility is
when one of the 2i vertices have degree r−2 (and this happens O(ni−1) times). Indeed, we have to avoid the edges that are
incident to the already picked vertices, and we ensured that no edge is counted twice. Note that out of these |EG)| −O(1)

edges, O(1) edges have a neighbor adjacent to the 2i vertices picked earlier.
Assume that the statement holds for t− 1 and consider |E(G′)|. If N (Mt−1, G) = o(nt−1), then clearly N (Mt, G) = o(nt)

and we are done, hence we assume that N (Mt−1, G) = Θ(nt−1). If |E(G′)| ≤ (r− 1)n/2− 2tr, then we can pick the last edge
at most |E(G)|−2tr ways, thus each term is less than doing the same inG, and there are less terms, but still Θ(nt−1) many,
so we lose Ω(nt−1). If |E(G′)| > (r−1)n/2−2tr, then all but at most 4tr of the vertices have degree r−1, thus all but a set E0

of at most 4tr2 edges have endpoints of degree r−1. For the copies of Mt−1 avoiding E0, the last edge can be picked at most
|E(G′)|−2(t−1)(r−2) < |E(G)|−2(t−1)(r−2) ways, thus we lose at least one copy ofMt for each such copy ofMt−1, and each
copy of Mt is counted at most t times. The O(nt−2) other copies of Mt−1 are each contained in at most |E(G′)| < |E(G)| − 1

copies ofMt. Compared toG, we have Θ(nt−1) copies ofMt−1 that are contained in less copies ofMt andO(nt−2) copies that
may be contained in more copies of Mt by O(1). This implies that N (Mt, G

′) ≤ N (Mt, G)−Θ(nt−1) + O(nt−2), completing
the proof.
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Let us turn to forbidden paths and let Pk denote the path on k vertices. Faudree and Schelp [6] determined ex(n, Pk),
improving a result of Erdős and Gallai [5]. Let Gn,k,` = `Kk−1 ∪ (K(k−2)/2 + Kn−`(k−1)−(k−2)/2), where G + G′ is obtained
by taking a copy of G and a vertex-disjoint copy of G′, and joining each vertex of G and each vertex of G′.

Theorem 2.2 (Faudree and Schelp [6]). We have ex(n, Pk) = |E(aKk−1 ∪Kb)| for n = a(k − 1) + b, where a and b are non-
negative integers and b < k. Furthermore we have equality if and only if G = aKk−1 ∪Kb or k is even, b = k/2 or b = 1 + k/2,
in which case Gn,k,` is another extremal graph for 0 ≤ ` ≤ a.

Theorem 2.3. We have ex(n,Mt, Pk) = N (Mt, aKk−1 ∪Kb) for n sufficiently large and of the form n = a(k − 1) + b, where a
and b are non-negative integers and b < k.

We will need a stability theorem of Füredi, Kostochka, and Verstraëte [7].

Theorem 2.4. Let ` ≥ 2 and n ≥ 3`−1 and k ∈ 2`+ 1, 2`+ 2, and let G be a connected n-vertex graph containing no k-vertex
path. Then

|E(G)| ≤
(
k − 1

2

)
+ (`− 1)(n− k + `+ 1)

unless (a) k = 2`, k 6= 6 and G ⊆ H(n, k, `) or (b) k = 2`+ 1 or k = 6 and we can obtain a star forest from G by deleting a set
A of at most `− 1 vertices.

Here H(n, k, a) is the following graph. We take a set A of order a, a set B of order n− k+ a, and a set C of order k− 2a.
We add all the edges between A and B and all the edges inside A ∪ C. In particular, H(n, k, t − 1) contains a vertex of
degree n− 1, and this is the only property of this graph we will use in addition to Theorem 2.4.

Proof of Theorem 2.3. Let G be an n-vertex Pk-free graph. Assume first that each component is of order o(n). Assume
that there is a component that is Gm,k,0 for some m. We write m = a′(k − 1) + b′ with b′ < k. Then we replace this
component by a′Kk−1 ∪Kb′ . By Theorem 2.2 the number of edges does not change. We claim that the number of copies of
other matchings does not decrease either. Indeed, after picking i independent edges from Gm,k,0, the next can be picked
|E(Gm−2i,k−2i,0)| ways. Let us write m− 2i = a′′(k− 2i− 1) + b′′ with b′′ < k, then |E(Gm−2i,k−2i,0)| = |E(a′′Kk−2i−1 ∪Kb′′)|.
After picking i independent edges from a′Kk−1 ∪Kb′ , we are left with a′ cliques each of order at least k− 2i, and one clique
of order at most b′ and at least k − 2i. We can obtain this graph from a′′Kk−2i−1 ∪Kb′′ by moving vertices from cliques to
smaller cliques. Each such step increases the number of edges. This shows that inside the part we changed, the number of
copies of Mi does not decrease. As each copy of Mt intersects this part in a copy of Mi for some i and is unchanged outside,
we have that the number of copies of Mt does not decrease.

Assume now that there is a component K on m vertices that is not a clique and not Gm,k,0. Then we can replace this
component by a′Kk−1 ∪Kb′ . The number of copies of Mi may decrease for i > 1, but by Theorem 2.2, the number of edges
increases. Each copy of Mt intersects K in a copy of Mi for some i, and each copy of Mi in K is extended to a copy of Mt

at most O(nt−i) ways. Therefore, by this change we lose o(nt−1) copies of Mt (recall that m = o(n)). If there are Ω(nt−1)

copies of Mt−1 outside K, then the number of copies of Mt in G increases by Ω(nt−1) because of the increase of the number
of edges in G. If there are o(nt−1) copies of Mt−1 outside K, then there are o(nt) copies of Mt in G and we are done.

Assume now that there is a component K ′ of order m = Ω(n). Then we can apply Theorem 2.4 to this component. We
obtain that there are three possibilities. If K ′ is a subgraph of H(m, k, `) or |E(K ′)| ≤ |E(H(m, k, `− 1))|, then

N (Mi,K) ≤ N (Mi, H(m, k, `)) < N (Mi, a
′Kk−1 +Kb′)

for every 1 < i ≤ t. Indeed, the number of edges in H(m, k, `) is not more than in a′Kk−1 + Kb′ , and there is a vertex of
linear degree (except for the trivial case `− 1 = 0), thus Lemma 2.1 implies the statement about Mi. Clearly, the number
of copies of M0 and M1 does not decrease either. As each copy of Mt intersects K ′ in an Mi for some i, the proof is complete
in this case.

If we can obtain a star forest from K ′ by deleting a set S of at most `− 1 vertices, we count the copies of Mi by picking
edges incident to S, or edges not incident to S. We fix α > 0. If at any time we pick an edge less than (1 − α)(k − 2)n/2

ways, then we are done. In particular, this is the case if we pick an edge incident to S if there are o(n) edges incident to
S. If there are Ω(n) edges incident to S, then Lemma 2.1 completes the proof. We are left with the case we pick each edge
from the star forest. Clearly, there are at most n− 1 edges there, thus we are done if k > 4. If k = 4, S must be empty and
it is easy to see that any star forest contains fewer copies of Mt than a′K3 +Kb′ .
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3. Forbidden matchings

We will use the following theorem of Berge and Tutte [2].

Theorem 3.1 (Berge-Tutte). A graph G is Ms-free if and only if there is a set A ⊂ V (G) such that removing A cuts G to
connected components G1, . . . , Gm with each V (Gi) of odd order such that

|A|+
m∑
i=1

|V (Gi)| − 1

2
≤ s− 1.

We call the partitions satisfying the above theorems Berge-Tutte partitions. Clearly, we can add any edges incident to
some vertex of A and any edges inside a component Gi without increasing |A| +

∑m
i=1

|V (Gi)|−1
2 , and without decreasing

the number of copies of H. Therefore, there is an Ms-free n-vertex graph with ex(n,H,Ms) copies of H where the vertices
in A have degree n − 1 and each Gi is a clique. Given an integer s, there are Os(1) such graphs, hence we can consider
this problem mostly solved. Still, given H, it is of interest to narrow down this list to those graphs that actually appear as
extremal graphs. Liu and Zhang [12], extending earlier results [13,16] proved that for every complete multipartite graph
H and every n ≥ 2s− 1,

ex(n,H,Ms) = max{N (H,K2s−1,N (H,H(n, 2s− 1, s− 1))}.

Gerbner [11] determined the order of magnitude of ex(n,H, sKk) for every H. In particular, for matchings it states
the following. Let U ⊂ V (H). A partial (m,U)-blowup of H is obtained by replacing each vertex u ∈ U with m vertices
u1, . . . , um, and replacing each edge by a complete bipartite graph between the corresponding vertices. Let us consider a
largest set U ⊂ V (H) such that no partial (m,U)-blowup of H contains Ms, and let b(H, s) denote the order of U . Then
ex(n,H,Ms) = Θ(nb(H,s)).

Observe that another characterization can be obtained using the Berge-Tutte theorem. If H contains Ms, then clearly
ex(n,H,Ms) = 0. Otherwise, there is a Berge-Tutte partition of H. Let b be the largest integer such that there is a Berge-
Tutte-partition of H where b vertices belong to one-vertex components Gi. Then ex(n,H,Ms) = Θ(nb), i.e., b = b(H, s).
Indeed, ex(n,H,Ms) = Ω(nb), since we can pick the b vertices from Θ(n) vertices Θ(nb) ways, and ex(n,H,Ms) = O(nb),
since if we fix a Berge-Tutte partition of an n-vertex Ms-free graph G, there are O(1) ways to embed at least |V (H)| − b
vertices to components Gi of order more than 1 and to A.

It is not clear how to obtain a simpler characterization of b(H, s). Clearly we cannot blow up the adjacent vertices
without creating Ms, thus b(H, s) ≤ α(H). Let τ(H) denote the smallest number of vertices such that each edge is incident
to at least one of them. Then the other vertices form a largest independent set, i.e., τ(H) = |V (H)| −α(H). If τ(H) ≤ s− 1,
then we can blow up each vertex in an independent set, since that does not increase τ(H) and τ(Ms) = s, hence in this case
b(H, s) = α(H). This can also be easily seen by the construction H(n, 2s− 2, s− 1) = H(n, 2s− 1, s− 1), which is obtained
from Ks−1,n−s+1 by adding all the possible edges inside the part of order s − 1. We can show that this construction does
not only give the order of magnitude but also an exact result if n is sufficiently large.

Proposition 3.1. Let τ(H) ≤ s− 1. Then ex(n,H,Ms) = N (H,H(n, 2s− 1, s− 1)) if n is sufficiently large.

Proof. Let G be an n-vertex Ms-free graph that contains ex(n,H,Ms) copies of H and consider a Berge-Tutte partition
of G. Count first the number of copies of H that contain an edge in some Gi. Observe that there are O(1) such edges.
Then there are O(1) ways to pick some vertices from A and some other vertices that are incident to edges inside some
Gj . Finally, there are O(n) ways to pick each other vertex from the components Gj . Observe that these are independent
from each other and from any endpoint of the edge picked first, thus there are at most α(H) − 1 of them, hence there are
O(nα(H)−1) such copies of H.

If |A| < s − 1, we delete each edge inside the sets Gi, and join s − |A| − 1 vertices of Gi to each other vertex. Let A′ be
the union of A and these s − |A| − 1 vertices. This way we obtain H(n, 2s − 2, s − 1). We deleted O(nα(H)−1) copies of H.
For each vertex v of A′ \A, we can find copies of H by picking v, τ(H)− 1 other vertices of A′ and α(H) vertices outside A′.
This can be done O(nα(H)) ways, thus the number of copies of H increases, a contradiction.

Finally, if the smallest possible A that can be chosen in a Berge-Tutte partition has order s − 1, then there cannot be
an edge inside any Gi. Indeed, we prove this by induction on s. For s = 2, G must be a star (plus some isolated vertices)
and we can pick the center as A. For larger s, we use that n is large enough. There is a vertex u ∈ A that is incident to
at least 2s − 1 vertices, as otherwise there are O(1) non-isolated vertices in G, thus G contains O(1) copies of H. Let us
delete u from G. The resulting graph G′ does not contain Ms−1, as that could be extended to an Ms in G by the edge uv for
a vertex v that is a neighbor of u and is not in the copy of Ms−1.
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Then by induction, either there is a Berge-Tutte partition of G′ with A0 having order less than s− 2, or a Berge-Tutte
partition of G′ with A0 having order s− 2 and no edge in any of the components created by removing A0, where A0 denotes
the set of vertices that cuts G′ to odd components in the definition of the Berge-Tutte partition.

In both cases, we add u to A0. This way we obtain a Berge-Tutte partition ofG, where the set A′′ = A0∪{u} corresponds
to A. We have that either |A′′| ≤ s − 2, or there are no edges outside A′′, completing the proof that each Gi is a singleton.
Then G is a subgraph of H(n, 2s− 1, s− 1), completing the proof.

We also prove a simple statement in the case b(H, s) = 0, i.e., ex(n,H,Ms) = O(1).

Proposition 3.2. (i). If every vertex of H has degree at least s, then ex(n,H,Ms) = N (H,K2s−1) for n ≥ 2s− 1.

(ii). If every vertex of H has degree at least s, except one vertex which has degree s− 1, then

ex(n,H,Ms) = max{N (H(n, 2s− 1, s− 1)),N (H,K2s−1)} for n ≥ 2s− 1.

Proof. Let us start by proving (i). Observe that b(H, s) = 0 since blowing up any vertex would result in an Ms (and
also because any vertex in a one-vertex Gi has degree at most s − 1). Let G be an n-vertex Ms-free graph and consider a
Berge-Tutte partition of G. We claim that there is at most one Gi with vertices contained in some copy of H. Indeed, if
|V (G1)| = a ≤ |V (G2)|, then vertices in G1 have degree at most a− 1 + |A|. Therefore, a− 1 + |A| ≥ s. On the other hand,
by the definition of the Berge-Tutte partition, |A|+ a− 1 ≤ |A|+ (|V (G1)| − 1)/2 + (|V (G2)| − 1)/2 ≤ s− 1, a contradiction.
We obtained that each copy of H is in A ∪ V (Gi) for some i, which has at most 2s− 1 vertices, completing the proof.

The proof of (ii) goes similarly. It is possible that G1 and G2 both have vertices that are contained in some copies of H.
However, then each vertex of G1 has degree less than s, thus there is exactly one vertex in G1. We claim that there is also
exactly one vertex in G2. Indeed, we have |A|+ (|V (G2)| − 1)/2 ≤ s− 1 by the definition of the Berge-Tutte partition, and
|A| ≥ s − 1 since the degree of the vertex in G1 is at most |A|. But this means we can delete the edges inside components
Gi of order more than 1 and then the resulting graph is a subgraph of H(n, 2s− 1, s− 1), completing the proof.
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