
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 14 (2024) 36–43
DOI: 10.47443/dml.2024.025

Research Article

A note on the maximal inverse sum indeg index of trees

Wei Gao∗

Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, USA

(Received: 25 January 2024. Received in revised form: 9 May 2024. Accepted: 8 August 2024. Published online: 20 August 2024.)

© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The inverse sum indeg index (ISI index) of a graph G is defined as ISI(G) =
∑

vivj∈E(G)(d(vi)d(vj))(d(vi)+ d(vj))
−1, where

d(vi) is the degree of a vertex vi. It is known that the star Sn uniquely minimizes the ISI index among trees of order n.
However, characterizing trees of order n with the maximal ISI index (optimal trees, for convenience) appears to be difficult.
Chen, Li, and Lin in [Appl. Math. Comput. 392 (2021) #125731] gave some structural properties and three conjectures
regarding an optimal tree. In this paper, the trees within a set T Sn of trees of order n are investigated, where T Sn is
defined in the main text and it is the set to which the optimal tree is conjectured to belong. Several structural properties
associated with an optimal tree are presented. The findings of the present paper imply that if the second part of Conjecture
4.3 of the mentioned paper holds, then its remaining two conjectures are also valid.
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1. Introduction

All graphs considered in this paper are finite, undirected, and simple. Let G be a such graph with vertex set V (G) =

{v0, v1, . . . , vn−1} and edge set E(G). For vi ∈ V (G), let N(vi) be the set of neighbors of vi, and di = dG(vi) (or d(vi) for
short) be the degree of a vertex vi. Then d(vi) = |N(vi)|, and ∆ = ∆(G) = max0≤i≤n−1 d(vi) is the maximum degree of G.
A vertex of degree 1 is said to be a pendent vertex. For an edge e = uv ∈ E(G), if either d(u) = 1 or d(v) = 1, then e is a
pendent edge. Let P = u0u1 . . . u`, ` ≥ 1, be a path of G with d(u0) ≥ 3, d(ui) = 2 for 1 ≤ i ≤ `− 1, and d(u`) 6= 2. If d(u`) ≥ 3

(respectively, d(u`) = 1), then P is said to be an internal path (respectively, a pendent path) of G.
The inverse sum indeg index (ISI index in short) of a graph G is defined [15] as

ISI(G) =
∑

vivj∈E(G)

f(d(vi), d(vj)),

where f(x, y) = xy
x+y for x, y ≥ 1. This recently developed topological index was shown to have a nice predicting ability for

the total surface area of octane isomers [15]. Some extremal values of the ISI index have been determined by Sedlar et
al. [14] for connected graphs, chemical trees, chemical graphs, graphs with given maximum degree, minimum degree, or
number of pendent vertices, and trees with k leaves. An and Xiong [3] later obtained the extremal ISI index among graphs
with prescribed matching number, vertex connectivity, or independence number. Recently, Jiang et al. [9] completely
characterized the structure of chemical trees with the maximal ISI index. For more results concerning ISI index, we refer
to [1–9,11–14].

For trees, it was proven in [14] that the star uniquely has the minimal ISI index. However, the characterization of trees
having maximal ISI index is an open problem [14]. Let Tn be the set of trees of order n. A tree with maximal ISI index in
Tn is referred to as an n-vertex optimal tree. In 2021, some structural properties of an n-vertex optimal tree were observed
and proven by Chen et al. [5]. Their main findings can be summarized as follows.

Proposition 1.1 (see [5]).

(i). An optimal tree has no internal paths of length at least 2.

(ii). An optimal tree has no pendent paths of length at least 3.

(iii). An optimal tree contains at most one pendent path of length 2.
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Additionally, Chen et al. [5] proposed the following three conjectures regarding an n-vertex optimal tree (corresponding
to Conjectures 4.2, 4.3, and 4.4 in [5]).

Conjecture 1.1 (see [5]). If T is an n-vertex optimal tree and n ≥ 20, then T has no vertices of degree 2 (or equivalent, no
pendent paths of length 2).

Conjecture 1.2 (see [5]). The n-vertex optimal tree is unique. Moreover, if n ≥ 20, then it is formed from a star S∆+1 with
a few pendent edges attached to some vertices of S∆+1.

Conjecture 1.3 (see [5]). If T is an n-vertex optimal tree, then ISI(T ) < 2n− 2.

In 2022, Lin et al. [10] investigated Conjectures 1.1 and 1.3, and Conjecture 1.3 has been proven for general trees in it.
They also got a better upper bound than Conjecture 1.3.

Lemma 1.1 (see [10]). Let n ≥ 2 and T an n-vertex tree with maximum degree ∆. Then, ISI(T ) < 2n− 2−∆.

In this paper, we consider a special class T Sn of trees (as defined in Section 2). Some structural properties of optimal
trees over T Sn are presented. These results show that if the second part of Conjecture 1.2 holds, then both Conjectures
1.1 and 1.3 are also valid.

2. Main results

Let n ≥ 20. For a tree T ∈ T Sn we introduce the following notation illustrated by Figure 2.1. The central vertex is denoted
by v0, its neighbors by v1, . . . , v∆. Additional pendent vertices are attached to vertices v1, . . . , vm, where m ≤ ∆, and the
number of pendent vertices attached to vi is denoted by pi for i = 1, . . . ,m. Notice that n = 1 + ∆ +

∑m
i=1 pi. Further, as for

the degrees of vertices in T it holds that dT (v0) = ∆, 2 ≤ dT (vi) = pi + 1 ≤ ∆ for i = 1, 2, . . . ,m, and for all other vertices of
T it holds that their degree equals one.

Without loss of generality, we assume that p1 ≥ p2 ≥ · · · ≥ pm−1 ≥ pm.
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Figure 2.1: A tree T ∈ T Sn.

We say that T ∈ T Sn is an optimal tree over T Sn, if T achieves the maximum ISI index among all trees in T Sn. In this
section, some structural properties of optimal trees over T Sn are presented. Based on these properties, we can infer that
if the second part of Conjecture 1.2 holds, then both Conjectures 1.1 and 1.3 are also valid.

Lemma 2.1. Let n ≥ 20 and T ∈ T Sn. Then ∆ ≥ 5.

Proof. Note that
n = 1 + ∆ +

m∑
i=1

pi ≤ 1 + ∆ + m(∆− 1) ≤ 1 + ∆ + ∆(∆− 1) = ∆2 + 1.

Hence, ∆ ≥ 5.

Lemma 2.2. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then m ≥ 2.

Proof. Suppose to the contrary that m = 1. Let T ′ = T − v0v∆ + v2v∆. Then T ′ ∈ T Sn, and

ISI(T )− ISI(T ′) =f(∆, p1 + 1) + (∆− 1)f(∆, 1)− f(∆− 1, p1 + 1)− (∆− 3)f(∆− 1, 1)− f(∆− 1, 2)− f(2, 1)

=
∆(p1 + 1)

∆ + p1 + 1
+

(∆− 1)∆

∆ + 1
− (∆− 1)(p1 + 1)

∆ + p1
− (∆− 3)(∆− 1)

∆
− 2(∆− 1)

∆ + 1
− 2

3
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=− A ·∆ + 9p1(p1 + 1)

3∆(∆ + 1)(∆ + p1)(∆ + p1 + 1)
,

where A = 2∆3 + ∆2(4p1 − 5)−∆
(
p2

1 + 18p1 + 1
)
−
(
10p2

1 − 5p1 − 6
)
. In the following, we will prove A > 0; that is, there is

a tree T ′ ∈ T Sn such that ISI(T ) < ISI(T ′), a contradiction. Note that n = 1 + ∆ + p1 ≥ 20. If p1 = 1, then ∆ ≥ 18, and

A = 2∆3 −∆2 − 20∆ + 1 > 0.

If 2 ≤ p1 ≤ 4, then ∆ ≥ 19− p1, and

∂A

∂∆
= 6∆2 + 2∆(4p1 − 5)−

(
p2

1 + 18p1 + 1
)

≥ 6(19− p1)2 + 2(19− p1)(4p1 − 5)−
(
p2

1 + 18p1 + 1
)

= − 3p2
1 − 84p1 + 1975 > 0,

that is, A is an increasing function on ∆. So,

A ≥ A
∣∣∣
∆=19−p1

= 3p3
1 − 54p2

1 − 868p1 + 11900 > 0.

If p1 ≥ 5, noting that ∆ ≥ p1 + 1, we have

∂A

∂∆
= 6∆2 + 2∆(4p1 − 5)−

(
p2

1 + 18p1 + 1
)

≥ 6(p1 + 1)2 + 2(p1 + 1)(4p1 − 5)−
(
p2

1 + 18p1 + 1
)

= 13p2
1 − 8p1 − 5 > 0,

that is, A is an increasing function on ∆. So,

A ≥ A
∣∣∣
∆=p1+1

= 5p3
1 − 20p2

1 − 14p1 + 2 > 0.

This completes the proof of the lemma.

Lemma 2.3. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then pm−1 ≥ 2.

Proof. Suppose to the contrary that pm−1 = 1. Then pm = 1. Let T ′ = T − vmvm1 + vm−1vm1, where vm1 is the unique child
of vm. Then T ′ ∈ T Sn, and

ISI(T )− ISI(T ′) =2f(∆, 2) + 2f(2, 1)− f(∆, 1)− f(∆, 3)− 2f(3, 1)

=
4∆

∆ + 2
+

4

3
− ∆

∆ + 1
− 3∆

∆ + 3
− 3

2

=− ∆3 − 6∆2 + 11∆ + 6

2(∆ + 1)(∆ + 2)(∆ + 3)
.

By Lemma 2.1, ∆ ≥ 5. Thus, ISI(T ) < ISI(T ′), which is a contradiction.

Lemma 2.4. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then

∆ <
p2

1p
2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4 +
√
B

2(p1 + pm + 4)
,

where

B =
(
p2

1p
2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4
)2

+ 2(p1 + pm + 4)
(
p3

1p
2
m + 3p3

1pm + p2
1p

3
m + 10p2

1p
2
m + 13p2

1pm + 5p1p
3
m

+21p1p
2
m + 2p1pm + 4p3

m + 8p2
m − 4p2

1 − 18p1 − 18pm − 16
)
.
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Proof. Let T ′ = T − vmvm1 + v1vm1 where vm1 ∈ N(vm) with dT (vm1) = 1. Then T ′ ∈ T Sn, and

ISI(T )− ISI(T ′) =p1f(p1 + 1, 1) + f(p1 + 1,∆) + pmf(pm + 1, 1) + f(pm + 1,∆)

− (p1 + 1)f(p1 + 2, 1)− f(p1 + 2,∆)− (pm − 1)f(pm, 1)− f(pm,∆)

=
p1(p1 + 1)

p1 + 2
+

∆(p1 + 1)

∆ + p1 + 1
+

pm(pm + 1)

pm + 2
+

∆(pm + 1)

∆ + pm + 1
− (p1 + 1)(p1 + 2)

p1 + 3

− ∆(p1 + 2)

∆ + p1 + 2
− (pm − 1)pm

pm + 1
− ∆pm

∆ + pm

=
−(p1 − pm + 1)(A1 ·∆2 + A2)

(p1 + 2)(p1 + 3)(pm + 1)(pm + 2)(∆ + p1 + 1)(∆ + p1 + 2)(∆ + pm)(∆ + pm + 1)
,

where

A1 =2∆2(p1 + pm + 4)− 2∆
(
p2

1p
2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4
)

−
(
p3
m(p2

1 + 5p1 + 4) + p2
m(p3

1 + 10p2
1 + 21p1 + 8) + pm(3p3

1 + 13p2
1 + 2p1 − 18)− 2(2p2

1 + 9p1 + 8)
)
,

A2 =2∆(p1 + pm + 2)(p1 + pm + 4)(2p1pm + p1 + 3pm + 1) + 2pm(p1 + 1)(p1 + 2)(pm + 1)(p1 + pm + 4).

Note that p1 − pm + 1 > 0, and A2 > 0. So, the necessary condition of ISI(T )− ISI(T ′) > 0 is A1 < 0. Denote

A1 = 2∆2a2 − 2∆a1 − a0,

where

a2 = p1 + pm + 4 > 0,

a1 = p2
1p

2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4 > 0,

a0 = p3
m(p2

1 + 5p1 + 4) + p2
m(p3

1 + 10p2
1 + 21p1 + 8) + pm(3p3

1 + 13p2
1 + 2p1 − 18)− 2(2p2

1 + 9p1 + 8).

It is easy to see that a0 is increasing in pm. Then

a0 ≥ a0

∣∣
pm=1

= 4p3
1 + 20p2

1 + 10p1 − 22 > 0.

So, exactly one of the two zero points of A1 is positive, and its positive zero point is

∆̂ =
2a1 +

√
4a2

1 + 8a2a0

4a2
=

p2
1p

2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4 +
√
B

2(p1 + pm + 4)
,

where

B =
(
p2

1p
2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4
)2

+ 2(p1 + pm + 4)
(
p3

1p
2
m + 3p3

1pm + p2
1p

3
m + 10p2

1p
2
m + 13p2

1pm + 5p1p
3
m

+21p1p
2
m + 2p1pm + 4p3

m + 8p2
m − 4p2

1 − 18p1 − 18pm − 16
)
.

Note that A1 is a quadratic function with the positive leading coefficient with respect to ∆. Then A1 < 0 if 0 < ∆ < ∆̂, and
A1 > 0 if ∆ > ∆̂. Recall that A1 > 0 implies ISI(T ′) > ISI(T ), which is a contradiction with T being optimal. Hence, it
must hold that A1 < 0, which implies ∆ < ∆̂ as claimed.

Lemma 2.5. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, and p1 ≥ pm + 2, then

∆ >
p2

1(pm + 1)(pm + 4) + p1(pm + 3)(3pm + 2)− 2(pm + 2)

p1 + pm + 4
.

39



W. Gao / Discrete Math. Lett. 14 (2024) 36–43 40

Proof. Let T ′ = T − v1v11 + vmv11 where v11 ∈ N(v1) with dT (v11) = 1. Then T ′ ∈ T Sn, and

ISI(T )− ISI(T ′) =p1f(p1 + 1, 1) + pmf(pm + 1, 1) + f(p1 + 1,∆) + f(pm + 1,∆)− (p1 − 1)f(p1, 1)

− (pm + 1)f(pm + 2, 1)− f(p1,∆)− f(pm + 2,∆)

=
p1(p1 + 1)

p1 + 2
+

pm(pm + 1)

pm + 2
+

(p1 + 1)∆

∆ + p1 + 1
+

(pm + 1)∆

∆ + pm + 1
− p1(p1 − 1)

p1 + 1

− (pm + 1)(pm + 2)

pm + 3
− p1∆

∆ + p1
− (pm + 2)∆

∆ + pm + 2

=
(p1 − pm − 1)(S − L)

(p1 + 1)(p1 + 2)(pm + 2)(pm + 3)(∆ + p1)(∆ + p1 + 1)(∆ + pm + 1)(∆ + pm + 2)
,

where

S =2∆4(p1 + pm + 4)− 2∆3
[
p2

1(pm + 1)(pm + 4) + p1(pm + 3)(3pm + 2)− 2(pm + 2)
]
,

L =∆2
[
p3

1(pm + 1)(pm + 4) + p2
1(pm(pm + 3)(pm + 7) + 8) + p1(pm − 1)(pm(3pm + 16) + 18)

−2(pm(2pm + 9) + 8)]− 2∆(p1 + pm + 2)(p1 + pm + 4)(p1(2pm + 3) + pm + 1)

− 2p1(p1 + 1)(pm + 1)(pm + 2)(p1 + pm + 4).

Firstly, we will show that L > 0. Denote L = ∆2b2 − 2∆b1 − b0, where

b2 = p3
1(pm + 1)(pm + 4) + p2

1(pm(pm + 3)(pm + 7) + 8) + p1(pm − 1)(pm(3pm + 16) + 18)− 2(pm(2pm + 9) + 8),

b1 = (p1 + pm + 2)(p1 + pm + 4)(p1(2pm + 3) + pm + 1),

b0 = 2p1(p1 + 1)(pm + 1)(pm + 2)(p1 + pm + 4).

Note that ∆ ≥ p1 + 1 and p1 ≥ pm + 2 ≥ 3. Then

b2 ≥(pm + 2)3(pm + 1)(pm + 4) + (pm + 2)2(pm(pm + 3)(pm + 7) + 8)

+ (pm + 2)(pm − 1)(pm(3pm + 16) + 18)− 2(pm(2pm + 9) + 8)

=2
(
p5
m + 14p4

m + 65p3
m + 124p2

m + 86pm + 6
)
> 0,

∂L

∂∆
= 2∆b2 − 2b1 ≥ 2(p1 + 1)b2 − 2b1

= 2p3
m(p3

1 + 4p2
1 + p1 − 1) + 2p2

m(p4
1 + 11p3

1 + 19p2
1 − 8p1 − 11)

+ 2pm(5p4
1 + 24p3

1 + 4p2
1 − 58p1 − 32) + 2(4p4

1 + 9p3
1 − 29p2

1 − 64p1 − 24) > 0,

that is, L is an increasing function on ∆. Thus,

L ≥ L
∣∣∣
∆=p1+1

= p3
m(p4

1 + 5p3
1 + p2

1 − 5p1 − 2) + p2
m(p5

1 + 12p4
1 + 24p3

1 − 26p2
1 − 57p1 − 18)

+ pm(5p5
1 + 27p4

1 + p3
1 − 149p2

1 − 174p1 − 46) + (4p5
1 + 10p4

1 − 46p3
1 − 162p2

1 − 142p1 − 32)

≥ (p4
1 + 5p3

1 + p2
1 − 5p1 − 2) + (p5

1 + 12p4
1 + 24p3

1 − 26p2
1 − 57p1 − 18)

+ (5p5
1 + 27p4

1 + p3
1 − 149p2

1 − 174p1 − 46) + (4p5
1 + 10p4

1 − 46p3
1 − 162p2

1 − 142p1 − 32)

= 10p5
1 + 50p4

1 − 16p3
1 − 336p2

1 − 378p1 − 98 > 0.

Since p1 − pm − 1 > 0, and T is optimal, we have S > 0, and so

∆ >
p2

1(pm + 1)(pm + 4) + p1(pm + 3)(3pm + 2)− 2(pm + 2)

p1 + pm + 4
.
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Theorem 2.1. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then p1 ≤ pm + 1; that is, |pi − pj | ≤ 1 for
i, j ∈ {1, 2, . . . ,m}.

Proof. Suppose to the contrary that p1 ≥ pm + 2. By Lemmas 2.5 and 2.4,

∆ >
p2

1(pm + 1)(pm + 4) + p1(pm + 3)(3pm + 2)− 2(pm + 2)

p1 + pm + 4
,

and
∆ <

p2
1p

2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4 +
√
B

2(p1 + pm + 4)
,

where B is defined in Lemma 2.4. Denote

X =p2
1(pm + 1)(pm + 4) + p1(pm + 3)(3pm + 2)− 2(pm + 2),

Y =p2
1p

2
m + 3p2

1pm + 5p1p
2
m + 11p1pm + 4p2

m + 6pm − 2p1 − 4 +
√
B.

Then

Y − 2X =−
[
p2

1

(
p2
m + 7pm + 8

)
+ p1

(
p2
m + 11pm + 14

)
− 4p2

m − 10pm − 4
]

+
√
B.

Denote
Z =

[
p2

1

(
p2
m + 7pm + 8

)
+ p1

(
p2
m + 11pm + 14

)
− 4p2

m − 10pm − 4
]2 −B.

Then

Z =2
[
p4

1

(
4p3

m + 27p2
m + 53pm + 32

)
− p3

1

(
4p4

m + 10p3
m − 51p2

m − 167pm − 116
)

−p2
1

(
21p4

m + 119p3
m + 170p2

m − 30pm − 98
)
− p1

(
29p4

m + 173p3
m + 302p2

m + 100pm − 24
)

−4p4
m − 8p3

m + 50p2
m + 152pm + 64

]
.

Since
∂4Z

∂p4
1

= 48(4p3
m + 27p2

m + 53pm + 32) > 0,

we have that ∂3Z
∂p3

1
is increasing in p1. Note that p1 ≥ pm + 2. Then

∂3Z

∂p3
1

≥ ∂3Z

∂p3
1

∣∣∣
p1=pm+2

= 12
(
12p4

m + 130p3
m + 479p2

m + 719pm + 372
)
> 0.

Similarly,

∂2Z

∂p2
1

≥ ∂2Z

∂p2
1

∣∣∣
p1=pm+2

= 4
(
12p5

m + 183p4
m + 1036p3

m + 2749p2
m + 3420pm + 1562

)
> 0,

∂Z

∂p1
≥ ∂Z

∂p1

∣∣∣
p1=pm+2

= 4
(
2p6

m + 42p5
m + 343p4

m + 1414p3
m + 3109p2

m + 3422pm + 1416
)
> 0.

Then

Z ≥ Z
∣∣∣
p1=pm+2

= 8
(
p6
m + 19p5

m + 147p4
m + 581p3

m + 1222p2
m + 1272pm + 486

)
> 0.

So, Y − 2X < 0 and it is a contradiction.

Theorem 2.2. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then pm ≥ 2, that is, T has no vertices of degree 2.

Proof. Suppose to the contrary that pm = 1. By Lemma 2.3 and Theorem 2.1, pi = 2 for i = 1, . . . ,m − 1. Then ∆ ≥ 8

follows from Table 1 of [5]. Let T ′ = T − vmvm,1 + v1vm,1, where vm,1 ∈ N(vm) with dT (vm,1) = 1. Then T ′ ∈ T Sn, and

ISI(T )− ISI(T ′) =f(∆, 3) + 2f(3, 1) + f(∆, 2) + f(2, 1)− f(∆, 4)− 3f(4, 1)− f(∆, 1)

=
3∆

∆ + 3
+

3

2
+

2∆

∆ + 2
+

2

3
− 4∆

∆ + 4
− 12

5
− ∆

∆ + 1

=
−7∆4 + 50∆3 + 55∆2 − 350∆− 168

30(∆ + 1)(∆ + 2)(∆ + 3)(∆ + 4)
< 0,

that is, ISI(T ) < ISI(T ′). It is a contradiction.
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Theorem 2.3. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then ISI(T ) < 2n− 2−∆− n−∆
n .

Proof. Let T be an optimal tree over T Sn. By Lemma 2.3 and Theorem 2.1, pm−1 ≥ 2, and |pi−pj | ≤ 1 for i, j ∈ {1, 2, . . . ,m}.
So, we may assume that pi = p for i = 1, . . . , s, and pi = p − 1 for i = s + 1, . . . ,m, where p ≥ 2 and 1 ≤ s ≤ m ≤ ∆. Then
n = 1 + ∆ + sp + (m− s)(p− 1) = 1 + ∆ + s + m(p− 1), and

ISI(T ) =s (f(∆, p + 1) + pf(p + 1, 1)) + (m− s) (f(∆, p) + (p− 1)f(p, 1)) + (∆−m)f(∆, 1)

=s

(
∆(p + 1)

∆ + p + 1
+

p(p + 1)

p + 2

)
+ (m− s)

(
∆p

∆ + p
+

p(p− 1)

p + 1

)
+

∆(∆−m)

∆ + 1

<s

(
∆(p + 1)

∆ + p
+

p(p + 1)

p + 1

)
+ (m− s)

(
∆p

∆ + p
+

p(p− 1)

p + 1

)
+ ∆−m

=
mp2(p + 2∆− 1) + s

(
2p2 + 3p∆ + ∆

)
(p + 1)(p + ∆)

+ ∆−m.

So,

(2n− 2−∆− n−∆

n
)− ISI(T )

>2 (∆ + s + m(p− 1))−∆− 1 + s + m(p− 1)

1 + ∆ + s + m(p− 1)
−

(
mp2(p + 2∆− 1) + s

(
2p2 + 3p∆ + ∆

)
(p + 1)(p + ∆)

+ ∆−m

)

=
a∆2 + b∆ + c

(p + 1)(p + ∆)(1 + ∆ + s + m(p− 1))
,

where

a = (p− 1)(m− s),

b = mp3 + mp2 (m− s + 1)− p
(
2m2 − 3ms + s2 + 1

)
+ m2 − 2ms + s2 − 1,

c = m2p
(
p3 + p2 − 3p + 1

)
+ mp

(
p2s + 4ps + 2p− 3s

)
+ p

(
2s2 + s− ps− p− 1

)
.

Note that p ≥ 2 and 1 ≤ s ≤ m ≤ ∆. Then a ≥ 0, and

c ≥ c|m=s = p(p + 1)(p2s2 + ps2 + s− 1) > 0.

Since
∂2b

∂p2
= 6mp + 2m (m− s + 1) > 0,

we have that ∂b
∂p is increasing in p. Then

∂b

∂p
≥ ∂b

∂p

∣∣∣
p=2

= 2m2 −ms− s2 + 16m− 1 > 0.

So,
b ≥ b|p=2 = m2 − s2 + 12m− 3 > 0.

Thus, a∆2 + b∆ + c > 0; that is, ISI(T ) < 2n− 2−∆− n−∆
n .

Combining the obtained conclusions, we get the following main theorem:

Theorem 2.4. Let n ≥ 20 and T ∈ T Sn. If T is an optimal tree over T Sn, then

(i) m ≥ 2;

(ii) |pi − pj | ≤ 1 for i, j ∈ {1, 2, . . . ,m};

(iii) T has no vertices of degree 2 (or equivalently, pm ≥ 2); and

(iv) ISI(T ) < 2n− 2−∆− n−∆
n .
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3. Conclusion

Characterizing trees with the maximal ISI index (optimal trees) among trees of order n appears to be difficult. In 2021,
Chen et al. [5] gave some structural properties and three conjectures regarding an optimal tree (Conjectures 1.1, 1.2, and
1.3). In 2022, Lin et al. [10] investigated Conjectures 1.1 and 1.3. We note that if the second part of Conjecture 1.2 holds,
then the optimal tree(s) among trees of order n will belong to T Sn. So, in this article, we investigate the optimal tree(s) over
T Sn. Although we have not completely solved the problem of characterizing optimal tree(s) over T Sn yet, we have found
several structural properties associated with an optimal tree. We believe that these properties will contribute greatly to
the final solution of the optimal tree over T Sn and hence to settle Conjecture 1.2. Based on Theorem 2.4, it is not difficult
to find that the key to determining the optimal tree(s) over T Sn is to determine the value of m for a given n. In the author’s
opinion, this is going to be a very challenging problem.
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