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Abstract
In this article, we characterize the products of simplicial generators for the Chow ring of a loopless matroid, extending a
result of Backman, Eur, and Simpson [J. Eur. Math. Soc., DOI: 10.4171/JEMS/1350]. We prove that the stable intersection
of a collection of tropical hyperplanes centered at the origin with the Bergman fan of a matroid is the Bergman fan of the
dual of a certain Rado matroid.
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1. Introduction

The Chow ring A•(M) of a loopless matroid M on ground set E was introduced by Feichtner and Yuzvinsky in [5] as
a generalization of the cohomology ring of De Concini and Procesi’s wonderful compactification of the complement of a
hyperplane arrangement [3]. The importance of the Chow ring was demonstrated by Adiprasito, Huh, and Katz in the proof
of the Heron-Rota-Welsh conjecture [1]. Feichtner and Yuzvinsky define A•(M) to be the graded ring R[zF | F ∈ LM −∅]

modulo the ideals 〈zF zF ′ | F, F ′ incomparable〉 and 〈
∑

F⊇a zF | a ∈ AM 〉, where LM denotes the lattice of flats of M and
AM the set of atoms in LM .

In [2], Backman, Eur, and Simpson introduced a set of generators for A•(M) called the simplicial generators (indepen-
dently defined by Yuzvinsky [13] in the context of linear subspace arrangement complements). The simplicial generators
are defined, for each nonempty flat F of M , by hF (M) = −

∑
G⊇F zG(M) ∈ A1(M). We write hF for hF (M) when M is clear

from context. We denote by A•∇(M) the presentation of the Chow ring of M by the simplicial generators:

A•∇(M) = R[hF | F ∈ LM −∅]
/

(I + J),

where I = 〈ha | a ∈ AM 〉 and J = 〈(hF − hF∨F ′)(hF ′ − hF∨F ′) | F, F ′ ∈ LM − ∅〉. We note that this presentation of J ,
appearing in [9], differs from that of [2].

In the free matroid on E, all subsets A ⊆ E are flats. The Chow ring of the free matroid surjects onto A•∇(M), for any
loopless matroid M on E, by hA 7→ hF , where F is the closure in M of a given nonempty subset A of E. In what follows, we
simply write hA(M), or hA, for hclM (A)(M). The simplicial presentation lends itself to the following combinatorial interpre-
tation of the Chow ring of M . Let A be a nonempty subset of E with rkM (A) > 1 (if rkM (A) = 1, then hA = 0 by definition).
The simplicial generator hA corresponds (via a combinatorial analogue of the cap product) to the principal truncation of
M at the flat F = clM (A), denoted TF (M); this is the matroid with bases B − f over all bases B of M which intersect F

nontrivially, and over all f ∈ B ∩ F [2, Theorem 3.2.3]. Furthermore, the cap product allows for a bijection between the
monomial basis for Ac

∇(M),
{
ha1

F1
· · ·hak

Fk
|
∑

ai = c, ∅ = F0 ( F1 ( · · · ( Fk, 1 ≤ ai < rkM (Fi)− rkM (Fi−1)
}
, and a class of

matroids called loopless relative nested quotients of M . We will forego the definition of these matroids until after defining
their generalizations which appear in Theorem 2.1.

Let us recall some basic definitions and notations. For a matroid M on ground set E, we let I(M), B(M), and C(M)

denote the collections of independent sets, bases, and circuits of M , respectively. The rank in M of a subset S of E is
denoted by rkM (S). The uniform matroid Uk,E is the matroid whose bases are all of the k-subsets of E. The dual of M ,
denoted M∗, is the matroid on E whose bases are the complements of the bases of M . The Bergman fan ΣM of M is the
polyhedral fan in RE/〈eE〉 consisting of the cones cone{eF | F ∈ F} for each flag F = {∅ 6= F1 ( · · · ( Ft 6= E} of flats of M ,
where eF denotes the indicator vector for F . For a matroid M of rank d + 1, up to scaling, there is a unique d-dimensional
Minkowski weight on ΣM [1], which is known as the Bergman class ∆M of M .
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For a nonempty subset S of E, let HS denote the corank-1 matroid on E with collection of bases {E−s | s ∈ S}. It is well-
known that the Bergman fans of corank-1 matroids are precisely the tropical hyperplanes centered at the origin. In [12],
Speyer defined a notion of stable intersection for tropical linear spaces. This relates closely to matroid intersection, defined
as follows. The matroid intersection of matroids M and N on a common ground set E, denoted M ∧N , is the matroid whose
spanning sets are the intersections of the spanning sets of M and N . It is noted in [7] that, as a special case of Theorem 4.11
in [12], the stable intersection of Bergman fans ΣM and ΣN is precisely ΣM∧N whenever M∧N is loopless. A related notion
is that of matroid union, defined in [10]: M ∨N is the matroid whose independent sets are of the form I ∪ J for I ∈ I(M)

and J ∈ I(N). We will make use of the fact that M ∧N can equivalently be defined as (M∗ ∨N∗)∗.
We characterize the products of simplicial generators in A•∇(M) using the duals of certain Rado matroids. In order to

define a Rado matroid, we first recall that a transversal of a collection {X1, . . . , Xm} of (not necessarily distinct) nonempty
subsets of a finite set Y is a set {y1, . . . , ym} of distinct elements in Y such that yi ∈ Xi for all i.

Theorem 1.1 (Rado’s theorem [11]). Let M be a matroid on Y , and let X be a collection of subsets X1, . . . , Xm of Y . There
exists a transversal of X which is independent in M if and only if rkM (∪j∈JXj) ≥ |J | for all J ⊆ {1, . . . ,m}.

Using Rado’s theorem, it is not hard to show that the subsets of X which have independent transversals in M form the
independent sets of a matroid on X .

Definition 1.1. For a matroid M on Y and a collection X of subsets X1, . . . , Xm of Y , the Rado matroid induced by X and
M is a matroid with ground set X . Its independent sets are given by the subcollections of X with a transversal in I(M).

Abusing terminology slightly, given a bipartite graph H with ordered partition (X , Y ), the subsets of X which can be
matched to a set in I(M) form the independent sets of the Rado matroid induced by H and M , denoted RH,M . The ground
set of RH,M will always be the first part of the partition (X , Y ) of H.

When M is the free matroid on Y , Rado’s theorem specializes to Hall’s theorem on transversals, and we obtain transver-
sal matroids from Rado matroids.

2. Main result

We first introduce a class of graphs to be used in our characterization of products of simplicial generators in A•∇(M).

Definition 2.1. LetA be a collection of nonempty subsetsA1, . . . , Am of a finite setE, and let Ê be a copy ofE, Ê = {ê | e ∈ E}.
We define G(A) to be the graph with bipartition (E, Ê ∪ A) and edge set

{eê | e ∈ E} ∪ {eA | A ∈ A and e ∈ A}.

Figure 2.1 depicts an example of such a graph. We remind the reader that G(A) is not the graph typically used to
represent the set system A, which was denoted by H in Definition 1.1.
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Figure 2.1: The graph G(A), where E = {1, . . . , 7}, A = {A1, A2}, A1 = {2, 3, 4}, and A2 = {4, 6}.

Theorem 2.1. Let A be a collection of (not necessarily distinct) nonempty subsets A1, . . . , Am of a finite set E, let M be a
matroid on E, and let G = G(A). We have

M ∧HA1
∧ · · · ∧HAm

= (RG,N )∗,

where N is the matroid M̂∗ ⊕ Um,A on Ê ∪ A, and M̂∗ is a copy of M∗ on Ê.
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Figure 2.2: A graph whose edge set is the set E in Figure 2.1 and whose graphic matroid is not a strict gammoid.

Before proving Theorem 2.1, we note an important corollary. Namely, that the matroids (RG,N )∗ in Theorem 2.1, when
they are loopless, are in natural bijection with the nonzero products of simplicial generators in A•∇(M). In fact, we can
determine precisely which of these matroids are loopless using the Dragon Hall-Rado condition of M : for a matroid M on
E, a collection A of subsets A1, . . . , Am of E is said to satisfy DHR(M) if rkM (∪j∈JAj) > |J | for any nonempty subset J of
{1, . . . ,m}. Equivalently, A satisfies DHR(M) if and only if, for every e ∈ E, there is a transversal I ⊆ E − e of A which is
independent in M [2, Proposition 5.2.3]. That RG(A),N has a coloop whenever A does not satisfy DHR(M) is clear from this
equivalent definition, for if there is an element e ∈ E which is in every independent transversal of A, then it is in every
basis of RG(A),N .

Corollary 2.1. LetA be a collection of nonempty subsets A1, . . . , Am ⊆ E, and let M be a loopless matroid on E. The product
of simplicial generators hA1 · · ·hAm in A•∇(M) is the Bergman class of the matroid (RG(A),N )∗ from Theorem 2.1 whenever
A satisfies DHR(M).

Proof of Corollary 2.1 assuming Theorem 2.1. We have noted the equivalence of a stable intersection of Bergman
fans and the Bergman fan of a matroid intersection whenever the matroid intersection is loopless. We now show that,
whenever A satisfies DHR(M), the matroid M ∧HA1

∧ · · · ∧HAm
is loopless of rank rkM (E) −m. The result then follows

form a direct application of Theorem 2.1.
We proceed by induction on |A|. When A = {A}, this is given by [2, Theorem 3.2.3]. Now, assuming |A| ≥ 2, let A ∈ A,

and let e ∈ E. Further, let I ⊆ E − e be a transversal of A which is independent in M . Note that E − I is a spanning
set for M∗. If a denotes the representative for A in I, then (E − I) ∪ a spans M∗ ∨H∗A. Thus, I − a is an independent set
in M ∧HA. Since I − a is a transversal of A − A which avoids the arbitrarily chosen element e ∈ E, we have that A − A

satisfies DHR(M ∧ HA). An application of the inductive hypothesis to the loopless matroid M ∧ HA of rank rkM (E) − 1

completes the proof.

Proof of Theorem 2.1. We work by induction on m. Since M ∧HA1
∧ · · · ∧HAm

= (M∗ ∨H∗A1
∨ · · · ∨H∗Am

)∗, it suffices to
show that M∗ ∨H∗A1

∨ · · · ∨H∗Am
= RG,N . The base case, m = 0, is trivial. Let m ≥ 1, and assume that the result holds for

the collection A−Am; that is,
R′ := M∗ ∨H∗A1

∨ · · · ∨H∗Am−1

is the Rado matroid on E induced by G(A − Am) and M̂∗ ⊕ Um−1,A−Am . It suffices to show that the independent sets of
R′ ∨H∗Am

are precisely the independent sets of RG,N .
First, suppose that a subset I of E is independent in R′ ∨H∗Am

. We will show that I is matched in G to an independent
set in the matroid M̂∗⊕Um,A on N . By definition, I = J ∪K, where J ∈ I(R′) and K ∈ I(H∗Am

) = I(U1,Am
). If K ⊆ J , then

I is independent in R′, and thus I is independent in RG,N . Otherwise, we have K = {a} for some a /∈ J . Take a matching
from J to an independent set of R′ and add the edge aAm, which is clearly disjoint from the others, to obtain a matching
from I to an independent set in RG,N .

Second, suppose that I ⊆ E is matched in G to a subset L of Ê ∪ A which is independent in M̂∗ ⊕ Um,A. If Am /∈ L,
then I is matched in G to an independent set in M̂∗ ⊕ Um−1,A−Am

on Ê ∪ {A1, . . . , Am−1}; that is, I ∈ I(R′), and thus
I ∈ I(R′ ∨H∗Am

). Otherwise, if Am ∈ L, then there exists some a in Am ∩ I such that I − a is matched to an independent
set in M̂∗ ⊕ Um−1,A−Am on Ê ∪ {A1, . . . , Am−1}. Thus, I − a ∈ I(R′), which implies that I ∈ I(R′ ∨H∗Am

). We have shown
that I(R′ ∨H∗Am

) = I(RG,N ), which completes the proof.

Example 2.1. Let us again consider the graphG = G(A) in Figure 2.1. LetM be the graphic matroid for the graph with edge
set E depicted in Figure 2.2. The matroid M has rank 4. Letting N = M̂∗⊕U2,A and R = RG,N , we have M∧HA1∧HA2 = R∗

by Theorem 2.1. The matroid R∗ is a rank-2 matroid with set of bases {17, 27, 37, 47, 57, 67}. For instance, {1, 2, 3, 5, 6} ⊂ E

is matched in G to {1̂, 3̂, 5̂, A1, A2} ∈ B(M∗ ⊕ U2,A), and so {4, 7} ∈ B(R∗).

The duals of transversal matroids are known as strict gammoids. We refer to the dual of a Rado matroid as a coRado
matroid. As we noted earlier, the Bergman fans of corank-1 matroids are precisely the tropical hyperplanes centered
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at the origin. Thus, Theorem 2.1 implies that the stable intersection of a Bergman fan ΣM with a collection of tropical
hyperplanes centered at the origin is the Bergman fan of a coRado matroid (RG,N )∗. Letting M be the free matroid, we
recover a special case of a theorem of Fink and Olarte.

Corollary 2.2 (see [6]). A matroid is a strict gammoid if and only if its Bergman fan is a stable intersection of tropical
hyperplanes centered at the origin.

Theorem 7.5 of [6] states, more generally, that a valuated matroid is a valuated strict gammoid if and only if its asso-
ciated tropical linear space is a stable intersection of tropical hyperplanes; Corollary 2.2 is the special case in which the
valuations are trivial. The graphic matroid for the graph in Figure 2.2, however, is not a strict gammoid, and thus the
Bergman fan of the coRado matroid R∗ in Example 2.1 is not a stable intersection of tropical hyperplanes.

We now return to the loopless relative nested quotients of a matroid M , which are shown in [2] to be in correspondence
with the monomial bases for the graded pieces of A•∇(M). First, we note that any principal truncation TF (M) is given
by the dual of the Rado matroid induced by the graph G({F}) and the matroid M̂∗ ⊕ U1,{F} on Ê t {F}. Now, we recall
that the monomial basis for the graded piece of degree c, Ac

∇(M), is the set of products ha1

F1
· · ·ham

Fm
of simplicial generators

corresponding to nested nonempty flats F1, . . . , Fm ∈ LM , with each 1 ≤ ai < rkM (Fi) − rkM (Fi−1) and
∑

ai = c. The
coRado matroids in Theorem 2.1 provide a new definition for the relative nested quotients of M : they are matroids of the
form (RG(A),N )∗, where A is a multiset of nested flats as described above, with ai copies of Fi for each i.

The graphs G(A) in Definition 2.1 and the Rado matroids associated to them in Theorem 2.1 can also be used to provide
an alternate proof of the Dragon Hall-Rado theorem of [2]. Coincidentally, Larson also obtained an alternate proof in [8],
posted the day before the first preprint of this paper was made available.

Corollary 2.3 (Dragon Hall-Rado theorem [2]). Let A1, . . . , Ad be nonempty subsets of a finite set E, and let M be a loopless
matroid on E of rank d + 1. We have M ∧HA1

∧ · · · ∧HAd
= U1,E if and only if {A1, . . . , Ad} satisfies DHR(M).

Proof. Let A = {A1, . . . , Ad}, let G = G(A), and let R = RG,N , where N is the matroid M̂∗ ⊕ Ud,A on Ê ∪ A (as in
Theorem 2.1). We recall that A satisfies DHR(M) if and only if, for any e ∈ E, there is a transversal I of A such that e /∈ I

and I ∈ I(M). Thus, it suffices to check that R = U|E|−1,E if and only if, for any e ∈ E, A is matched in G to an independent
set in M which does not contain e.

To prove sufficiency, we recall from the proof of Corollary 2.1 that, when A satisfies DHR(M), the coRado matroid R∗ is
loopless of rank d+ 1−d. To prove necessity, suppose that R = U|E|−1,E , and let e ∈ E be arbitrary. Since E−e is a basis of
R, it is matched in G to a basis B̂∗ of M̂∗ (of cardinality |E| − d− 1) and to each of the vertices A1, . . . , Ad ∈ V (G). Letting I

be the set of vertices matched to A1, . . . , Ad, we see that I is independent in M and does not contain e. This completes the
proof.

Eur and Larson [4] generalized the simplicial presentation for the Chow ring of a matroid to augmented Chow rings
of polymatroids. We expect that Theorem 2.1 generalizes to the case of polymatroids as well. We welcome interested
researchers to explore this direction.
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