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Abstract
A coalition in a graph G with a vertex set V consists of two disjoint sets V1, V2 ⊂ V , such that neither V1 nor V2 is a
dominating set, but the union V1 ∪ V2 is a dominating set in G. A partition of V is called a coalition partition π if every
non-dominating set of π is a member of a coalition and every dominating set is a single-vertex set. Every coalition partition
generates its coalition graph. The vertices of the coalition graph correspond one-to-one with the partition sets and two
vertices are adjacent if and only if their corresponding sets form a coalition. In the paper [T. W. Haynes, J. T. Hedetniemi,
S. T. Hedetniemi, A. A. McRae, R. Mohan, Discuss. Math. Graph Theory 43 (2023) 931–946], the authors proved that
partition coalitions of cycles can generate only 27 coalition graphs and asked about the shortest cycle having the maximum
number of coalition graphs. In this paper, we show that C15 is the shortest graph having this property.
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1. Introduction

Let G be a simple graph. We denote the vertex set and edge set of G as V (G) and E(G), respectively. The corona G◦K1 of a
graph G is the graph obtained by attaching a pendant edge at each vertex of G. A set S ⊆ V (G) is said to be a dominating
set if every v ∈ V (G)\S is adjacent to some vertex in S. The domination number γ(G) is the minimum size of a dominating
set of G. For a detailed treatment of domination theory, we refer the reader to [13–15].

In [8], Haynes et al. introduced the concept of coalitions in graphs. This concept has been studied in several publications;
for instance, see [4–7, 9–12]. Let V1 and V2 be two disjoint subsets of V (G). They form a coalition if neither of them is a
dominating set, but their union V1 ∪ V2 is. A vertex partition π = {V1, V2, . . . , Vk} of V (G) is called a coalition partition if
every non-dominating set of π is a member of a coalition and every dominating set is a single-vertex set. The maximum
cardinality of a coalition partition is the coalition number of a graph G, and is denoted by C(G). Various types of this
concept have been studied in [1–3].

The coalition graph (c-graph), denoted by CG(G, π), is obtained by associating the partition sets of π with vertices, and
two vertices of CG(G, π) are adjacent if and only if the corresponding sets form a coalition inG. In [10], the authors showed
that there are only 18 c-graphs of paths. A path is called coalition universal if its coalition partitions define all 18 c-graphs.
Henning et al. [5] proved that there are no universal coalition paths and P10 is the shortest path that defines the maximal
number of c-graphs, which is 15. They determined the number of c-graphs of Pk for a given positive integer k.

Haynes et al. [10] showed that there are exactly 27 graphs of order at most 6 that can be c-graphs of cycles (see
Figure 1.1): K2, P3, P4, P5, 2K2, K3, C4, C5, K1,3, the graphs F1 and F2, the diamond K4 − e, K4, P2 ∪ P3, K2 ∪ K3,
the house graph H, the double stars S(1, 2) and S(2, 2), the bull graph B, the graphs H1, H2, and H3, 3K2, K2 ∪ P4, the
corona P3 ◦K1, and the corona K3 ◦K1. A cycle is called coalition universal if its coalition partitions define all 27 c-graphs.

In this paper, we answer the following question posed by Haynes et al. in [10].

Question 1.1. Does there exist a universal coalition cycle, that is, a cycle Ck on which all 27 coalition graphs can be defined?
If so, what is the smallest such integer k?

Since the c-graphK3 has no edges, every set of the corresponding coalition partition should be a dominating set, that is,
by definition, every set should be a single-vertex set. Obviously, it is only possible for the cycle of order 3, and consequently,
K3 is exclusively a c-graph for C3. Therefore, there are no universal coalition cycles, and we reformulate Question 1.1 as
follows.
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Figure 1.1: Coalition graphs defined by cycles.

Question 1.2. Does there exist a cycle Ck on which all 26 coalition graphs can be defined? If so, what is the smallest such
integer k?

2. Coalition graphs defined by C15

It is known that the Stirling numbers of the second kind, s(n, k), count partitions of a set of cardinality n into k nonempty
subsets. To compute the numbers of all c-graphs for C15, it is sufficient to check necessary properties of s(15, k)k=2..6 =

{16383, 2375101, 42355950, 210766920, 420693273} partitions [16]. The results of computer enumeration of the number of
c-graphs of cycles up to 15 vertices are given in Table 1. According to these results, the graph C15 is the shortest cycle
generating all 26 c-graphs.

The c-graphs defined by C15 and its coalition partitions are shown in Table 2. We assume that the vertices of C15 are
given consecutive positive integers. The number before a coalition set represents a vertex of a c-graph.

3. Coalition graphs of cycles of order less than 15

In this section, we prove that the number of c-graphs for cycles Ck, k ≤ 14, is less than 26. In order to achieve this goal, it
suffices to show that there is a c-graph G of Figure 1.1, which is not derived by the cycle Ck, where k ≤ 14. We first present
an observation, which will be useful for our proofs.

Observation 3.1. (i). Let π(G) = {V1, V2, . . . , Vk} be a coalition partition of a graph G. Then |Vi ∪ Vj | ≥ γ(G) for any two
coalition sets Vi and Vj of π(G).

(ii). Let S1 and S2 be the minimal dominating sets (of cardinality k) in cycle C3k. Then the sets S1 and S2 are always
disjoint.

(iii). The cycle C3k, k ≥ 1, has three disjoint minimal dominating sets of order k. After removing two minimal dominating
sets from the cycle, the remaining vertices form a minimal dominating set.

Now, we prove the following result:

Theorem 3.1. The cycle Ck does not define the c-graph C5, where k ∈ {6, 7, 9}.
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Table 1: Number of coalition graphs of Ck, k ≤ 15.

CG(Ck) C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

K2 . . 3 7 20 54 130 308 711 1599 3542 7740
P3 . . 18 56 224 873 2940 9878 32400 103220 324632 1007625
K3 . 5 8 49 184 573 1910 5951 17856 53235 155526 448285
2K2 . . 3 7 38 243 1025 4565 19890 80184 317891 1232520
K1,3 . . 6 14 96 450 1760 7623 29668 111176 414946 1494235
P4 . . 18 56 288 1278 4760 17930 65070 224952 767760 2572200
F1 . 5 . 42 204 639 2490 8525 27138 87256 268926 813665
C4 . . 3 14 48 171 560 1716 5166 15210 43820 124590

K4 − e . . 6 28 40 198 650 1287 4116 11440 25928 70995
P2 ∪ P3 . . 6 . 40 180 425 2585 8388 25064 102816 307020
S(1, 2) . . 6 14 48 342 920 3168 12084 34229 112742 359550
P5 . . . 7 48 72 260 1232 1950 5967 21497 38445
B . . . 7 16 27 150 451 972 3081 9289 21525
K4 1 . . 7 7 . 50 77 59 364 672 865
F2 . . . . 8 9 10 154 216 364 2198 3645

S(2, 2) . . . . 4 . 15 110 114 546 2324 3960
C5 . 1 . . 8 . 3 44 . 26 210 16

K2 ∪K3 . . . . . 18 . . 312 . . 3690
H2 . . . . . 18 . . 216 . . 2040
H1 . . . . . . . . 48 . . 480
H . . . . . . . . 12 . . 90
3K2 . . 1 . . 9 . . 123 . . 1540

K2 ∪ P4 . . . . . 9 . . 120 . . 1095
P3 ◦K1 . . . . . 9 . . 84 . . 615
K3 ◦K1 . . . . . . . . 4 . . 35
H3 . . . . . . . . 12 . . 90

Table 2: Coalition partitions for all coalition graphs of C15.

CG(C15) coalition partitions for CG(C15) edges of CG(C15)

K2 1:(1, 2,. . . ,12) 2:(13, 14, 15) 1-2
P3 1:(1, 2,. . . ,12) 2:(13, 15) 3:(14) 1-2; 1-3
K3 1:(1, 2, 5, 7, 9, 11) 2:(3, 13, 14) 3:(4, 6, 8, 10, 12, 15) 1-2,3; 2-3
K1,3 1:(1, 2,. . . ,12) 2:(13) 3:(14) 4:(15) 1-2; 1-3; 1-4
2K2 1:(1, 2, 5, 10, 11) 2:(3, 12) 3:(4, 8, 13, 14) 4:(6, 7, 9, 15) 1-3; 2-4
P4 1:(1, 2, 5, 10, 11, 14) 2:(3, 12, 15) 3:(4, 8) 4:(6, 7, 9, 13) 1-3,4:2-4
F1 1:(1, 2, 5, 8, 10, 11) 2:(3, 12, 15) 3:(4, 14) 4:(6, 7, 9, 13) 1-2,3,4; 2-4
C4 1:(1, 2, 5, 8, 11) 2:(3, 9, 15) 3:(4, 7, 12, 14) 4:(6, 10, 13) 1-3,4; 2-3,4

K4 − e 1:(1, 2, 5, 8, 11) 2:(3, 9, 12, 15) 3:(4, 7, 14) 4:(6, 10, 13) 1-2,3,4; 2-3,4
K4 1:(1, 4, 7, 10) 2:(2, 8, 11, 14) 3:(3, 6, 13) 4:(5, 9, 12, 15) 1-2,3,4; 2-3,4; 3-4

P2 ∪ P3 1:(1, 2, 5, 8, 11) 2:(3, 15) 3:(4, 14) 4:(6, 9, 12) 5:(7, 10, 13) 1-3,5; 2-4
S(1, 2) 1:(1, 2, 5, 8, 11) 2:(3) 3:(4, 14) 4:(6, 9, 12, 15) 5:(7, 10, 13) 1-3,4,5; 2-4
P5 1:(1, 2, 5, 8, 13) 2:(3, 9, 14, 15) 3:(4, 7, 12) 4:(6, 11) 5:(10) 1-4,5; 2-3,4
B 1:(1, 2, 5, 8) 2:(3, 9, 12, 15) 3:(4, 7) 4:(6, 11, 14) 5:(10, 13) 1-2,4,5; 2-3,4
F2 1:(1, 2, 5, 8, 14) 2:(3, 15) 3:(4, 7, 10, 13) 4:(6, 9, 12) 5:(11) 1-3,4,5; 2-3,4

S(2, 2) 1:(1, 2, 5, 8, 13, 14) 2:(3, 9, 12, 15) 3:(4, 7) 4:(6) 5:(10) 6:(11) 1-2,5,6; 2-3,4
C5 1:(1, 4, 13) 2:(2, 7, 10) 3:(3, 8, 15) 4:(5, 11, 14) 5:(6, 9, 12) 1-2,5; 2-4; 3-4,5

K2 ∪K3 1:(1, 4, 7, 10) 2:(2, 14) 3:(3, 13) 4:(5, 8, 11) 5:(6, 9, 12, 15) 1-3,5; 2-4; 3-5
H2 1:(1, 4, 7, 10) 2:(2, 13) 3:(3, 15) 4:(5, 8, 11, 14) 5:(6, 9, 12) 1-2,4; 2-4; 3-4,5
H1 1:(1, 4, 7, 10) 2:(2, 13) 3:(3, 12, 15) 4:(5, 8, 11, 14) 5:(6, 9) 1-2,3,4; 2-4; 3-4,5
H 1:(1, 4, 7, 13) 2:(2, 10) 3:(3, 15) 4:(5, 8, 11, 14) 5:(6, 9, 12) 1-2,4,5; 2-4; 3-4,5
3K2 1:(1, 4, 7, 10) 2:(2, 14) 3:(3, 15) 4:(5, 8, 11) 5:(6, 9, 12) 6:(13) 1-6; 2-4; 3-5

K2 ∪ P4 1:(1, 4, 7, 10) 2:(2, 14) 3:(3) 4:(5, 8, 11) 5:(6, 9, 12, 15) 6:(13) 1-5,6; 2-4; 3-5
P3 ◦K1 1:(1, 4, 7, 10) 2:(2) 3:(3, 15) 4:(5, 8, 11, 14) 5:(6, 9, 12) 6:(13) 1-4,6; 2-4; 3-4,5
K3 ◦K1 1:(1, 4, 7, 10) 2:(2) 3:(3, 12, 15) 4:(5, 8, 11, 14) 5:(6, 9) 6:(13) 1-3,4,6; 2-4; 3-4,5
H3 1:(1, 4, 7, 13) 2:(2) 3:(3, 15) 4:(5, 8, 11, 14) 5:(6, 9, 12) 6:(10) 1-4,5,6; 2-4; 3-4,5

Proof. The vertex sets of cycles C6, C7, and C9 can be partitioned into five subsets, whose cardinalities are listed below in
descending order:

1). 2 1 1 1 1
2). 3 1 1 1 1 3). 2 2 1 1 1
4). 5 1 1 1 1 5). 4 2 1 1 1 6). 3 3 1 1 1 7). 3 2 2 1 1 8). 2 2 2 2 1
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Then the cycle C5 can potentially be configured using these partitions as shown in Figure 3.1. The brackets represent
the vertices of C5, and the number inside them indicates the cardinality of the corresponding non-dominating set. We
demonstrate that these graphs cannot be the c-graph C5 defined by the cycle Ck for k ∈ {6, 7, 9}.
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Figure 3.1: All possible c-graphs C5 derived by vertex partitions of C6, C7, and C9.

Case 1. Assume that the cycles 2.1, 3.1, 3.2, 4.1, 5.1, 5.2, 6.1, 6.2, 7.1, and 7.2 are c-graphs C5. It can be seen that each
of these graphs contains a dominating set with cardinality less than γ(C7) or γ(C9). This is impossible due to part (i) of
Observation 3.1.

Case 2. Assume that the cycles 1.1, 7.3, and 8.1 are c-graphs C5. Then each of these graphs contains two minimal
dominating sets of order 2 or 3 having a vertex in common, contradicting part (ii) of Observation 3.1.

Case 3. Assume that the cycle 7.4 is a c-graph C5. This graph has two disjoint minimal dominating sets of order 3, but
the remaining set is not a minimal dominating set of order 3. This contradicts part (iii) of Observation 3.1.

Now, we demonstrate that the c-graph 3K2 is not derived by the cycle Ck, where k ∈ {8, 10, 11, 13, 14}.

Theorem 3.2. The cycle Ck does not define the c-graph 3K2, where k ∈ {8, 10, 11, 13, 14}.

Proof. Let π = {V1, V2, . . . , V6} is a coalition partition of cycle Ck, where k ∈ {8, 10, 11, 13, 14}. Without loss of generality,
assume that sets V2i−1 ∪ V2i, i ∈ {1, 2, 3}, form coalitions in π.

(i). Let π be the coalition partition of the cycle C8. Assume that |Vi| = 3 for exactly one value of i ∈ {1, 2, . . . , 6} or
|Vi| = 2 for exactly two values of i ∈ {1, 2, . . . , 6} (in both cases, |Vj | = 1 for all j 6= i). Then there exist i and j such that
|Vi ∪ Vj | = 2, contradicting part (i) of Observation 3.1.

(ii). Let π be a coalition partition of cycle C10 or C11. Since γ(C10) = γ(C11) = 4, |V2i−1 ∪ V2i| ≥ 4 for all i ∈ {1, 2, 3}. So,∑6
i=1 |Vi| ≥ 12. Recall that π is a vertex partition of the cycles. Then

∑6
i=1 |Vi| ∈ {10, 11}. This implies a contradiction.

(iii). Let π be a coalition partition of cycle C13 or C14. Since γ(C13) = γ(C14) = 5, we can write |V2i−1 ∪ V2i| ≥ 5 for
all i ∈ {1, 2, 3}. Thus,

∑6
i=1 |Vi| ≥ 15. Since π is a vertex partition of the cycles,

∑6
i=1 |Vi| ∈ {13, 14}. This leads to a

contradiction.

Theorem 3.3. The cycle C12 does not define the c-graph C5.

Proof. The vertex sets of the cycle C12 can be partitioned into five subsets, whose cardinalities are listed below in descend-
ing order:

1). 8 1 1 1 1 4). 6 2 2 1 1 7). 5 2 2 2 1 10). 4 3 2 2 1 13). 3 3 2 2 2.
2). 7 2 1 1 1 5). 5 4 1 1 1 8). 4 4 2 1 1 11). 4 2 2 2 2
3). 6 3 1 1 1 6). 5 3 2 1 1 9). 4 3 3 1 1 12). 3 3 3 2 1

All possible configurations of a cycle C5 defined by these partitions are shown in Figure 3.2. We demonstrate that these
graphs cannot be the c-graph C5 defined the cycle C12.

Case 1. Assume that all cycles associated with partitions 1) through 8) and the cycles 9.1, 9.2, 10.1 – 10.4, and 12.1 are
c-graphs C5. It can be seen that each of these graphs contains a dominating set with cardinality less than γ(C12). This is
impossible due to part (i) of Observation 3.1.
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Figure 3.2: All possible c-graphs C5 derived by vertex partitions of C12.
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Figure 3.3: Placement coalitions in C12 generated by cycle 13.2.

Case 2. Assume that the cycles 9.3, 11.1, 12.2, and 13.1 are c-graphsC5. Then each of these graph contains two minimal
dominating sets of order 4 having a vertex in common, contradicting part (ii) of Observation 3.1.

Case 3. Assume that the cycles 9.4 and 10.5 are c-graphs C5. It can be observed that each of these graphs has two
disjoint minimal dominating sets of order 4, but the remaining set is not a minimal dominating set of order 4. This
contradicts part (iii) of Observation 3.1.
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Case 4. Assume that the cycle 13.2 is a c-graph C5. We consider the sequential placement of possible coalitions in
the graph C12. The vertices of two non-dominating sets, corresponding to the coalition (2)–(2), are marked with black and
white circles. In addition, black and white squares are used to indicate the vertices of sets with cardinality 3 in the path
(3)–(2)–(2)–(3) in such a way that the vertices associated with coalitions (2)–(3) have identical colors.

The unique (up to symmetry) placement of a possible coalition (2)–(2) is depicted in Figure 3.3a. The black coalition
(2)–(3) can only be positioned in the manners illustrated in Figure 3.3b. Next, the white coalition (2)–(3) can only be
located as shown in Figure 3.3c. It can be verified that the union of two sets of cardinality 3 (black and white squares) is a
dominating set of C12, which means that a new edge should connect the corresponding vertices in the c-graph. Then there
exist two vertices having degree greater than 2, which is impossible. Therefore, the graph C12 cannot define the c-graph
C5.

4. Conclusion

We have shown that the cycle C15 is the shortest graph that defines all c-graphs of Figure 1.1, except K3. This raises the
following problem:

Problem 4.1. Describe all universal cycles.
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