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Abstract
A signed inversion sequence of length n is a sequence of integers e = e1 · · · en, where ei+1 ∈ {0, 0̄, 1, 1̄, . . . , i, ī } for every
i ∈ {0, 1, . . . , n− 1}. For a set of signed patterns B, let Īn(B) be the set of signed inversion sequences of length n that avoid
all the signed patterns from B. We say that two sets of signed patterns B and C are Wilf-equivalent if |Īn(B)| = |Īn(C)| for
every n ≥ 0. In this paper, by generating trees, we show that the number of Wilf-equivalences among singles of a length-2
signed pattern is 3 and the number of Wilf-equivalences among pairs of a length-2 signed patterns is 30.
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1. Introduction

The goal of this paper is to give analogies of enumerative results on inversion sequences related to permutations charac-
terized by pattern-avoidance in the inversion sequences related to signed permutations. Let Bn be the hyperoctahedral
group, which is the natural analogue of the symmetric group Sn. We identify classes of restricted inversion sequences of
elements of Bn with enumerative properties analogous to results in the inversion sequences of elements of Sn.

Restricted inversion sequences. Any permutation π′ = π′1π
′
2 · · ·π′n in Sn can be coded as an inversion sequence

π1π2 · · ·πn of length n, where πj = |{i | π′i < π′n+1−j , n+2−j ≤ i ≤ n}|, for all j = 1, 2, . . . , n. For example, the permutations
of S3, namely 123, 132, 213, 231, 312, and 321, are coded by the following inversion sequences 000, 010, 001, 011, 002, and 012,
respectively. Note that an inversion sequence π = π1π2 · · ·πn of length n satisfies 0 ≤ πi < i for all i = 1, 2, . . . , n. We denote
the set of all inversion sequences of length n by In. Let π = π1π2 · · ·πn ∈ In and let τ be any word contains all the letters
0, 1, . . . , k. An occurrence of τ in π is a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1πi2 · · ·πik is order-isomorphic to
τ ; in such a context τ is usually called a pattern. We say that π avoids τ , or is τ -avoiding, if there is no occurrence of τ in
π. We denote the set of all τ -avoiding inversion sequences in In by In(τ). For an arbitrary finite collection of patterns T ,
we say that π avoids T if π avoids any τ ∈ T ; we denote the corresponding subset of In by In(T ).

Restricted signed inversion sequences. Let us view the elements of Bn as signed permutation s = s1s2 · · · sn in
which each of the symbols 1, 2, . . . , n appears once, possibly barred. Clearly, the cardinality ofBn is n!2n. Let θ = θ1θ2 · · · θn ∈
Bn. We define the barring operation as the one which changes the symbol θi to θi and θi to θi. It is thus an involution, that is,
θi = θi. Furthermore, we define the absolute value |a| = |ā| = a, for all a ≥ 0. Any signed permutation π = π1π2 · · ·πn in Bn
can be coded as an signed inversion sequence θ = θ1θ2 · · · θn of length n, where |θj | = |{i | |πi| < |πn+1−j |, n+ 2− j ≤ i ≤ n}|
and θj is barred if and only if πn+1−j is barred, for all j = 1, 2, . . . , n. We denote the set of all signed inversion sequences of
length n by Īn. For example, the singed permutation 3̄15̄2̄4 ∈ B5 is coded by the following signed inversion sequence 00̄2̄02̄.

Let θ = θ1θ2 · · · θn ∈ Bn and τ be any word contains all the letters 0, 1, . . . , k possibly barred. We say that θ contains τ ,
if there is a sequence of k indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that |θi1 ||θi2 | · · · |θik | is order-isomorphic to |τ1||τ2| · · · |τk|
and θij is barred if and only if τj is barred, for all 1 ≤ j ≤ k. In such a context τ is usually called a signed pattern. For
example, the signed inversion sequence 00̄2̄02̄ avoids 001 but contains 001̄ and the signed inversion sequence 00̄02̄0̄ avoids
000 but contains 01̄0̄. We denote the set of all τ -avoiding signed inversion sequences in Īn by Īn(τ). For an arbitrary finite
collection of patterns B, we say that π avoids B if π avoids any τ ∈ B; we denote the corresponding subset of Īn by Īn(B).
We say that two sets of signed patterns B and C are Wilf-equivalent if |Īn(B)| = |Īn(C)|, for all n ≥ 0.

In the symmetric group Sn, for every pattern τ ∈ S3, the number of τ -avoiding permutations is given by the nth Catalan
number 1

n+1

(
2n
n

)
, see [2]. Simion [6] showed that there are similar results for the hyperoctahedral group, for every signed

pattern τ ∈ B2, the number of τ -avoiding signed permutations in Bn is given by
∑n
j=0 j!

(
n
j

)2 (For generalization, see [4]).
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As an extension of these works, several researchers studied restricted inversion sequences. In particular, in [1,5], explicit
formulas and/or generating functions are derived, which count the inversion sequences of a given length that avoid a
length-3 pattern. In this paper, we study the number of the signed inversion sequences in Īn that avoid a length-2 signed
pattern. In particular, we show the following result:

Theorem 1.1. For signed inversion sequences, we show that
(1) the number of Wilf-equivalences among singles of a length-2 signed pattern is 3, and
(2) the number of Wilf-equivalences among pairs of length-2 signed patterns is 30.

In the next section, we extend the use of generating functions from the case of inversion sequences to signed inversion
sequences. In Section 3, we prove Theorem 1.1(1), and then in Section 4, we prove Theorem 1.1(2).

2. Generating trees and signed inversion sequences

To establish a meaningful link between generating trees and the problem of avoiding patterns in signed inversion se-
quences, let us extend the generating trees [7] that discussed in [3] to pattern avoidance on signed inversion sequences.
Given a set of patterns B, we define Ī(B) = ∪n≥0Īn(B). We proceed to build a pattern-avoidance tree, denoted as T (B),
for the set Ī(B). If does not exists an nonempty signed inversion sequence that avoids the set B, then the tree T (B) has
only a root labeled by empty word ε. Starting from this initial root that remains at level 0, the nodes at level n+ 1 within
the tree T (B) can be generated from the nodes at level n in a manner that the descendants of e = e1 · · · en ∈ Īn(B) are
e′ = e1 · · · enj ∈ Īn+1(B), where j = n̄, . . . , 1̄, 0̄, 0, 1, . . . , n. Now, we proceed to relabel the vertices of the tree T (B) as follows.
Let T (B; e) be the subtree comprises the signed inversion sequence e as its root along with its subsequent descendants in
T (B). Let e, e′ be any two nodes in T (B), e is said to be equivalent to e′, denoted by e ∼ e′ if and only if T (B; e) ∼= T (B; e′)

as plane tree isomorphism. We define the set of all equivalent classes in the quotient set T (B)/ ∼ by E(B). We denote each
equivalence class in E(B) by the label of the singular node found on the tree T (B) as the first node (from top to bottom,
left to right). Let T [B] be the identical tree T (B), where each node of T (B) is replaced with its corresponding equivalence
class label.

Example 2.1. Let B = {00, 0̄0̄, 01, 01̄}. The left side of Figure 2.1 presents the first levels of the generating tree T (B). The
generating tree T [B] is given by

ε 0̄, 0,

0 00̄,

0̄ a1, 00̄, 0̄1,

0̄1 00̄, 0,

am  am+1, 00̄, 0, b2, . . . , bm, cm,

bm  00̄, 0, b2, . . . , bm−1,

cm  bm+1, 00̄, 0, b2, . . . , bm,

where am = 0̄1̄ · · · m̄, bm = 0̄1̄ · · · m̄m, and cm = 0̄1̄ · · · m̄(m + 1). For instance, the right side of Figure 2.1 presents the first
levels of the generating tree T [{00, 0̄0̄, 01, 01̄}].

ε

0̄

0̄1̄

0̄1̄2̄ 0̄1̄0 0̄1̄1 0̄1̄2

0̄0 0̄1

0̄11̄ 0̄10

0

00̄

ε

0̄

0̄1̄

0̄1̄2̄ 00̄ 0 0̄1̄2

00̄ 0̄1

0 00̄

0

00̄

Figure 2.1: The generating trees T ({00, 0̄0̄, 01, 01̄}) and T [{00, 0̄0̄, 01, 01̄}].
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Now, let us prove the rules of T [B], where B = {00, 0̄0̄, 01, 01̄}:

• the children of ε are 0̄, 0. Thus, ε 0̄, 0.

• the only child of 0 is 00̄, so 0 00̄. Note that there are no children for 00̄.

• the children of 0̄ are 0̄1̄, 0̄0, 0̄1. Note that T (B; 0̄0) ∼= T (B; 00̄). So, 0̄ a1, 00̄, 0̄1.

• the children of 0̄1 are 0̄11̄ and 0̄10. Note that T (B; 0̄11̄) ∼= T (B; 0) (the only child of 0̄11̄ is 0̄11̄0 and there are no children
for 0̄11̄0) and T (B; 0̄10) ∼= T (B; 0̄0) ∼= T (B; 00̄) (by removing the second letter from any signed inversion sequence of the
form 0̄10π′). Thus, 0̄1 0, 00̄.

• the children of am are am+1 = amm+ 1, amj with j = 0 . . . ,m − 1, bm = amm, and cm = am(m + 1). Note that
T (B; am0) ∼= (T (B; 00̄) (for the signed inversion sequence am0 there are no children), T (B; am1) ∼= T (B; 0̄1̄1) ∼= T (B; 0)

(see the previous item), and T (B; amj) ∼= T (B; bj) (by removing the any letter k from a signed inversion sequence amjπ′

such that |k| > j) for j = 2, 3, . . . ,m− 1. Thus, am  am+1, 00̄, 0, b2, . . . , bm, cm;

• Similarly, we have that bm  00̄, 0, b2, . . . , bm−1 and cm  bm+1, 00̄, 0, b2, . . . , bm.

After we guessed and proved (if possible) the rules of the generating tree T [B], we translate these rules into a system
of equations and we solve for FB(x) =

∑
n≥0 |Īn(B)|xn. Note that the rule e v(1), . . . , v(s) can be translated to

Ie(x) = 1 + x

s∑
j=1

Iv(j)(x),

where Iw(x) =
∑
n≥0(#the nodes at level n in T (B;w))xn is the generating function for the number of nodes at level n ≥ 0

in the subtree of T (B;w), where its root stays at level 0. Clearly, FB(x) = Iε(x).

Example 2.2. As continuation of Example 2.1, we have

Iε(x) = 1 + xI0̄(x) + xI0(x),

I0(x) = 1 + xI00̄(x),

I0̄(x) = 1 + xA1(x) + xI00̄(x) + xI0̄1(x),

I0̄1(x) = 1 + xI00̄(x) + xI0(x),

Am(x) = 1 + xAm+1(x) + xI00̄ + xI0(x) + x

m∑
j=2

Bj(x) + xCm(x),

Bm(x) = 1 + xI00̄(x) + xI0(x) + x

m−1∑
j=2

Bj(x),

Cm(x) = 1 + xI00̄(x) + xI0(x) + x

m+1∑
j=2

Bj(x),

where Am(x) = Iam(x), Bm(x) = Ibm(x), and Cm(x) = Icm(x).
Note that I00̄(x) = 1 and I0(x) = 1 + x. So, by induction on m, we have that Bm(x) = (1 + x)m. This implies that

Cm(x) = (1 + x)m+2, and
Am(x) = xAm+1(x) + (1 + x)m+1 + x(1 + x)m+2.

By iterating this equation infinity number of times (here we assumed that |x| < 1), we obtain

A1(x) = (1 + x)2 + x(1 + x)3 + xA2(x)

= (1 + x)2(1 + x(1 + x)) + x(1 + x)3(1 + x(1 + x)) + x2A3(x)

= (1 + x)2(1 + x(1 + x) + x2(1 + x)2) + x(1 + x)3(1 + x(1 + x) + x2(1 + x)2) + x3A4(x)

= · · · = (1 + x)2
∑
j≥0

xj(1 + x)j + x(1 + x)3
∑
j≥0

xj(1 + x)j

=
(1 + x)2(1 + x+ x2)

1− x− x2
.
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Hence, by solving

Iε(x) = 1 + xI0̄(x) + xI0(x),

I0(x) = 1 + xI00̄(x),

I0̄(x) = 1 + xA1(x) + xI00̄(x) + xI0̄1(x),

I0̄1(x) = 1 + xI00̄(x) + xI0(x),

for Iε(x), we obtain

FB(x) = Iε(x) =
1 + x+ x2

1− x− x2
.

3. Avoiding a length-2 signed pattern

In this section, we deal with avoiding a length-2 signed pattern. To shorten the notation, we define Sm to be either the
word SS · · ·S with m letters or the sequence S, S, . . . , S with m terms, for any sequence S and a nonnegative integer m. By
finding the number of signed inversion sequences of length n that avoid a length-2 signed pattern, for all n = 1, 2, . . . , 7, we
can guess that there are three Wilf classes, see Table 1.

τ {|Īn(τ)|}n=1,2,...,7

00, 00̄, 0̄0, 0̄0̄ 2, 7, 36, 245, 2076, 21059, 248836
01, 01̄, 0̄1, 0̄1̄ 2, 7, 33, 193, 1342, 10796, 98552
10, 10̄, 1̄0, 1̄0̄ 2, 8, 46, 338, 2992, 30800, 360110

Table 1: Number signed inversion sequences in Īn(τ), where n = 1, 2, . . . , 7 and τ is any length-2 signed pattern.

Theorem 3.1. We have

(1) 00 ∼ 00̄ ∼ 0̄0 ∼ 0̄0̄,

(2) 01 ∼ 01̄ ∼ 0̄1 ∼ 0̄1̄,

(3) 10 ∼ 10̄ ∼ 1̄0 ∼ 1̄0̄.

Proof. (2). By symmetric operation baring, we see that 01 ∼ 0̄1̄ and 01̄ ∼ 0̄1. Hence, it is enough to show that 01 ∼ 01̄.
Note that the generating trees T [01] and T [01̄] are given by a root ε and the following rules

ε a1, b0,0,

am  (am+1)m+1, bm,0, bm,1, . . . , bm,m,

bm,j  (bm+1,j)
m+2, bm+1,0, bm+1,1, . . . , bm+1,j ,

where am = 0̄m and bm,j = amj. To prove these are the rules of T [01] (similarly, T [01̄]), we have to study the children of
am and bm,j . Note that the children of ε are a1 = 0̄ and b0,0 = 0, so the rule ε  a1, b0,0 holds. Also, the children of am
are exactly amj̄ with j = 0, 1, . . . ,m and bm,0, bm,1, . . . , bm,m, where T (01, amj̄) ∼= T (01, am+1). Hence, the rule for am is
given by am  (am+1)m+1, bm,0, bm,1, . . . , bm,m. Moreover, the children of bm,j are bm,j ī with i = 0, 1, . . . ,m + 1, and bm,ji

with i = 0, 1, . . . , j, where T (01, bm, jī) ∼= T (01, bm+1,j) and T (01, bm,ji) ∼= T (01, bm+1,i). Hence, the rule for am is given by
bm,j  (bm+1,j)

m+2, bm+1,0, bm+1,1, . . . , bm+1,j .

(1). By symmetric operation baring, we see that 00 ∼ 0̄0̄ and 00̄ ∼ 0̄0. Hence, it is enough to show that 00 ∼ 00̄. Note that
the generating tree T [00] is given by a root ε and the following rules:

ε a0;, b0;,

am;i1···is  (am+1;i1···is)m+s+2, (bm;ji1···is)i1−1
j=1 , (bm;i1ji2···is)i2−1

j=i1+1, . . . , (bm;i1···isj)
m+s+1
j=is+1 ,

bm;i1···is  (bm+1;i1···is)m+s+2, (bm;ji1···is)i1−1
j=0 , (bm;i1ji2···is)i2−1

j=i1+1, . . . , (bm;i1···isj)
m+s+1
j=is+1 ,

where am;i1···is = 00̄mi1 · · · is and bm,j = 0̄mi1 · · · is.
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Also, the generating tree T [00̄] is given by a root ε and the following rules:

ε c0;, d0;,

cm;i1···is  (cm+1;i1···is)m+s+2, (dm;ji1···is)i1−1
j=1 , (dm;i1ji2···is)i2−1

j=i1+1, . . . , (dm;i1···isj)
m+s+1
j=is+1 ,

dm;i1···is  (dm+1;i1···is)m+s+2, (dm;ji1···is)i1−1
j=0 , (dm;i1ji2···is)i2−1

j=i1+1, . . . , (dm;i1···isj)
m+s+1
j=is+1 ,

where cm;i1···is = 01̄mi1 · · · is and dm,j = 1̄mi1 · · · is. We leave to the reader that the rules of the generating trees T [00] and
T [00̄] are holding (similar to the proofs of the Case (2)). Hence, T [00] ∼= T [00̄] by mapping am;i1···is to cm;i1···is and bm;i1···is

to dm;i1···is . Hence, 00 ∼ 00̄.

(3). By symmetric operation baring, we see that 10 ∼ 1̄0̄ and 10̄ ∼ 1̄0. Hence, it is enough to show that 10 ∼ 10̄. Note that
the generating trees T [10] and T [10̄] are given by a root ε and the following rules

ε a1, a1,

am  (am+1)m+2, bm,1, bm,2, . . . , bm,m,

bm,j  (bm+1,j)
m+3, bm+1,j+1, bm+1,j+2, . . . , bm+1,m+1,

where am = 0̄m and bm,j = amj. We leave to the reader that the rules of the generating trees T [10] and T [10̄] are holding
(similar to the proofs of the Case (2)). Hence, T [00] ∼= T [00̄], which implies that 00 ∼ 00̄

4. Avoiding a pair of length-2 signed patterns

In this section, we deal with avoiding a pair of length-2 signed patterns. By finding the number of signed inversion
sequences of length n that avoid a length-2 signed pattern, for all n = 1, 2, . . . , 7, we can guess that there are 30 Wilf
classes, see Table 2. Note that by baring operation, we see that |Īn(B)| = |Īn(B̄)|, for all n ≥ 0. So, in Table 2, we do
include the baring of a set B if B is included.

Based on Table 2, in order to find the number of Wilf classes when signed inversion sequences of length n avoid a pair
of length-2 signed pattern, we have to consider the Classes 6, 11, 12, 19, 26 in Table 2. In the next 5 propositions, we prove
that each class of these classes create exactly one Wilf class.

Proposition 4.1. We have {00, 0̄0̄} ∼ {01, 0̄1}.

Proof. Let B = {01, 0̄1}. Clearly, the children of the root ε of T (B) are 0 and 0̄. But with baring we see that T (B; 0) ∼=
T (B; 0̄). Thus, ε  0, 0. The children of 0m are 0mm̄, . . . , 0m0̄, 0m+1. Clearly, T (B; 0mj̄) ∼= T (B; 0m+1). Thus, 0m  

(0m+1)m+2. Hence, the generating tree T [B] is given by

ε 0, 0

0m  (0m+1)m+2.

Let B = {00, 0̄0̄}. Clearly, the children of the root ε of T (B) are 0 and 0̄. But with baring we see that T (B; 0) ∼= T (B; 0̄).
Thus, ε 0, 0. The children of 01 · · · (m−1) are 01 · · · (m−1)m̄, . . . , 01 · · · (m−1)0̄, 01 · · · (m−1)m. By exchanging the letters
j̄ and m, we have T (B; 01 · · · (m − 1)j̄) ∼= T (B; 01 · · ·m). Thus, 01 · · · (m − 1)  (01 · · ·m)m+2. Hence, the generating tree
T [B] is given by

ε 0, 0

01 · · · (m− 1) (01 · · ·m)m+2.

Hence, by mapping the node 0m of T [01, 0̄1] to the node 01 · · · (m− 1) of T [00, 0̄0̄], we see that T [00, 0̄0̄] ∼= T [01, 0̄1], which
implies {00, 0̄0̄} ∼ {01, 0̄1}.

As a corollary from Proposition 4.1, we see that the number of signed inversion sequences of length n that avoid {01, 0̄1}
is given by (n+ 1)!, for all n ≥ 0.
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1 {01, 0̄1̄} 2, 6, 18, 52, 146, 402, 1092
2 {01̄, 0̄1} 2, 6, 20, 76, 344, 1888, 12416
3 {00, 0̄1̄} 2, 6, 21, 81, 341, 1558, 7679
4 {00, 0̄1} 2, 6, 22, 98, 524, 3298, 23960
5 {01, 01̄} 2, 6, 22, 98, 526, 3338, 24526
6 {00, 0̄0̄},{01, 0̄1} 2, 6, 24, 120, 720, 5040, 40320
7 {00, 01̄} 2, 6, 24, 120, 722, 5092, 41252
8 {00̄, 0̄1} 2, 6, 24, 121, 736, 5239, 42693
9 {00̄, 0̄1̄} 2, 6, 24, 121, 737, 5263, 43107
10 {00̄, 01} 2, 6, 25, 132, 842, 6288, 53766
11 {00, 01},{00̄, 01̄} 2, 6, 25, 133, 859, 6516, 56710
12 {00, 00̄},{00, 0̄0},{00̄, 0̄0} 2, 6, 26, 150, 1082, 9366, 94586
13 {01, 1̄0̄} 2, 7, 31, 155, 834, 4717, 27675
14 {01̄, 10} 2, 7, 31, 159, 917, 5896, 42231
15 {01, 1̄0} 2, 7, 31, 162, 979, 6766, 52924
16 {01̄, 10̄} 2, 7, 31, 162, 982, 6836, 54060
17 {01̄, 1̄0̄} 2, 7, 32, 175, 1106, 7943, 64128
18 {01, 10̄} 2, 7, 32, 177, 1143, 8430, 69920
19 {01, 10},{01̄, 1̄0} 2, 7, 32, 178, 1164, 8748, 74304
20 {00, 1̄0̄} 2, 7, 34, 204, 1429, 11314, 99153
21 {00̄, 1̄0} 2, 7, 34, 207, 1500, 12542, 118506
22 {00, 10̄} 2, 7, 34, 208, 1521, 12874, 123410
23 {00̄, 10} 2, 7, 34, 209, 1546, 13327, 130922
24 {00, 1̄0} 2, 7, 35, 224, 1735, 15716, 162618
25 {00̄, 1̄0̄} 2, 7, 35, 225, 1757, 16085, 168484
26 {00, 10},{00̄, 10̄} 2, 7, 35, 226, 1780, 16489, 175191
27 {10, 1̄0̄} 2, 8, 44, 292, 2192, 17948, 156740
28 {10̄, 1̄0} 2, 8, 44, 292, 2204, 18332, 164924
29 {10, 10̄} 2, 8, 44, 296, 2312, 20384, 199376
30 {10, 1̄0} 2, 8, 44, 300, 2420, 22460, 235260

Table 2: Number of signed inversion sequences in Īn(B), where n = 1, 2, . . . , 7 andB is any pair of length-2 signed patterns.

Similar to the proof of Proposition 4.1, we obtain the next result.

Proposition 4.2. The generating trees T [00, 01] and T [00̄, 01̄] have a root ε and satisfy

ε a1, b0,0,

am  (am+1)m+1, bm,0, . . . , bm,m,

bm,j  (bm+1,j)
m+2, bm+1,0, . . . , bm+1,j−1,

where am = 0̄m and bm,j = amj. Thus, T [00, 01] ∼= T [00̄, 01̄], which implies that {00, 01} ∼ {00̄, 01̄}.

Proposition 4.3. We have {00, 00̄} ∼ {00, 0̄0} ∼ {00̄, 0̄0}.

Proof. We proceed by showing there are bijections α : Īn({00, 00̄}) ↔ Īn({00, 0̄0}) and β : Īn({00, 0̄0}) ↔ Īn({00̄, 0̄0}). Let
π = π1 · · ·πn ∈ Īn be any signed inversion sequence, we say πi1 · · ·πis is a (s, d)-level if exists s ≥ 1 and exist i1 < · · · < is

such that d = |πi1 | = · · · = |πis | 6= |πj |, for all j 6∈ {i1, . . . , is}.
Now, let us define α. Let π ∈ Īn({00, 00̄}). Clearly, the (s, d)-level of π forms a sequence of type either d̄d̄ · · · d̄d or d̄d̄ · · · d̄.

We define α(π) to be π after changing the (s, d)-level d̄d̄ · · · d̄d of π to dd̄ · · · d̄d̄, for all d = 0, 1, . . . , n. Thus, π ∈ Īn({00, 00̄})
if and only if α(π) ∈ Īn({00, 0̄0}). Hence, {00, 00̄} ∼ {00, 0̄0}.

Now, let us define β. Let π ∈ Īn({00, 0̄0}). Clearly, the (s, d)-level of π forms a sequence of type either dd̄ · · · d̄ or
d̄d̄ · · · d̄. We define β(π) to be π after changing the (s, d)-level dd̄ · · · d̄ of π with s ≥ 1 to dd · · · d, for all d = 0, 1, . . . , n. Thus,
π ∈ Īn({00, 00̄}) if and only if β(π) ∈ Īn({00̄, 0̄0}). Hence, {00, 0̄0} ∼ {00̄, 0̄0}.

Proposition 4.4. We have {01, 10} ∼ {01̄, 1̄0}.

Proof. We proceed by showing there is a bijection α : Īn({01, 10})↔ Īn({01̄, 1̄0}). Let π = π1 · · ·πn ∈ Īn, we say that π has
a minimal level k if there exist i such that πi = k and πj = s̄ for any 0 ≤ s < k and 1 ≤ j ≤ n. For example, π = 0̄1̄0̄1̄2̄323̄1̄0̄

has a minimal level 3. If k does not exist, then any letter in π is barred.
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Now, let π = π1 · · ·πn ∈ Īn({01, 10}). If π has a minimal level k, then any letter πj is barred whenever |πj | > k. Define
α(π) = π′1 · · ·π′n, where π′j = πj if |πj | ≤ k and π′j = π̄j if |πj | > k. Thus, any letter π′j of α(π) is not barred (respectively,
barred) whenever |π′j | > k (respectively, |π′j | < k). Thus, π avoids {01, 10} if and only if α(π) avoids {01̄, 1̄0}. Hence,
{01, 10} ∼ {01̄, 1̄0}.

To count the class B = {01, 10}, we find the generating tree T [B]. Clearly, the children of the root ε of T [B] are 0 and
0̄. Thus, ε  0, 0̄. The children of 0̄m are 0̄mm̄, . . . , 0̄m0̄, 0̄m0, . . . , 0̄mm. Clearly, T (B; 0̄mj̄) ∼= T (B; 0̄m+1). Thus, 0̄m  

(0̄m+1)m+1, 0̄m0, . . . , 0̄mm. Moreover, The children of 0̄mj are 0̄mjm+ 1, . . . , 0̄mj0̄, 0̄mjj. Clearly, T (B; 0̄mjj̄) ∼= T (B; 0̄m+1j)

and T (B; 0̄mjj) ∼= T (B; 0̄m+1j). Thus, 0̄mj  (0̄m+1j)m+3. Hence, the generating tree T [B] is given by

ε 0, 0̄

0̄m  (0̄m+1)m+1, 0̄m0, . . . , 0̄mm,

0̄mj  (0̄m+1j)m+3.

Let Bm,j(x) = I0̄mj(x) and Bm(x) = I0̄m(x). Then

Bm,j(x) = 1 + (m+ 3)xBm+1,j(x).

By iterating, we have (from now, we assume that |x| < 1)

Bm,j(x) = 1 + (m+ 3)xBm+1;j(x)

= 1 + (m+ 3)x+ (m+ 3)(m+ 4)x2Bm+2;j(x)

= · · · = 1 + (m+ 3)x+ (m+ 3)(m+ 4)x2 + (m+ 3)(m+ 4)(m+ 5)x3 + · · ·

=
∑
i≥0

(m+ 2 + i)!

(m+ 2)!
xi.

Moreover, Bm(x) = 1 + (m+ 1)xBm+1(x) + x
∑m
j=0Bm,j(x), which implies

Bm(x) = 1 + (m+ 1)xBm+1(x) + (m+ 1)x
∑
i≥0

(m+ 2 + i)!

(m+ 2)!
xi.

By induction on m,

Bm(x) =
∑
i≥0

(m+ i)!

m!
xi

1 +
∑
i′≥0

(m+ i+ 1)(m+ 2 + i+ i′)!

(m+ 2 + i)!
xi

′+1


=
∑
i≥0

(m+ i)!

m!
xi +

∑
i≥0

∑
i′≥0

(m+ i+ 1)(m+ 2 + i+ i′)!(m+ i)!

(m+ 2 + i)!m!
xi

′+i+1.

Note that Iε(x) = 1 + xI0(x) + xI0̄(x), which is equivalent to Iε(x) = 1 + xB0,0(x) + xB1(x). Thus,

Iε(x) = 1 + x
∑
i≥0

(i+ 2)!

2
xi + x

∑
i≥0

(i+ 1)!xi + x
∑
i≥0

∑
i′≥0

(i+ i′ + 3)!

i+ 3
xi

′+i+1.

Hence, the number of signed inversion sequences of length n that avoid B is given by

n! + (n+ 1)!(Hn+1 − 1),

where Hn =
∑n
k=1

1
k is the nth Harmonic number.

Similar to the proof of Proposition 4.1, we obtain the following result:

Proposition 4.5. The generating trees T [00, 10] and T [00̄, 10̄] have a root ε and satisfy

ε a1, b0,0,

am  (am+1)m+1, bm,0, . . . , bm,m,

bm,j  (bm+1,j)
m+2, bm+1,j+1, . . . , bm+1,m+1,

where am = 0̄m and bm,j = amj. Thus, T [00, 10] ∼= T [00̄, 10̄], which implies that {00, 10} ∼ {00̄, 10̄}.
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