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Abstract

Let G = (V, E) be a graph. The harmonic index of G is defined as >, . m, where d(u) and d(v) denote the degrees of
vertices v and v in G, respectively. In this paper, conditions involving the harmonic index for some Hamiltonian properties
of a graph are presented. An upper bound for the harmonic index of a graph is also presented.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notations and terminologies not defined here
follow those in [1]. Let G = (V(G), E(G)) be a graph with n vertices and e edges. The degree of a vertex v is denoted by
de(v) (or simply, d(v)). We use § and A to denote the minimum degree and maximum degree of G, respectively. A set of
vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a
graph G is an independent set of the largest possible size. The independence number, denoted by 3(G), of a graph G is the
cardinality of a maximum independent set in G. For disjoint vertex subsets X and Y of V(G), we use E(X,Y) to denote
the set of all the edges in F(G) such that one end vertex of each edge is in X and the other end vertex of the edge is in
Y. Particularly, F(X,Y) := {zy € E(G) : « € X,y € Y }. A cycle C in a graph G is called a Hamiltonian cycle of G if C
contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is
called a Hamiltonian path if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path.

The first Zagreb index was introduced by Gutman and Trinajstié in [4]. For a graph G, the first Zagreb index is defined
as ) ,cv(q) W) = ek () (d(u)+d(v)). Zhou and Trinajsti¢ in [7] introduced the concept of the general sum-connectivity
index of a graph. The general sum-connectivity index, denoted by x(G), of a graph G is defined as 3, c g (d(w) +d(v))%,
where « is a real number such that o # 0. Obviously, x1(G) is the same as the first Zagreb index of a graph G. Also,
2x-1(G) is known as the harmonic index, denoted by H(G), of a graph G. In this paper, we use the harmonic index of a
graph to obtain sufficient conditions for Hamiltonian and traceable graphs. The main results are as follows.

Theorem 1.1. Let G be a k-connected graph with n vertices and e edges, where k > 2 and n > 3. If

(6+4)%,

> S~ 7
H(G) = Sarsa ¢

then G is Hamiltonian, where

62

n—(k+1)

Theorem 1.2. Let G be a k-connected with n vertices and ¢ edges, where k > 1 and n > 9. If

M = (k+1)5% +

(64+A0)?,
> T
H(G) = 53 5a

then G is traceable, where

e2

N:(k+2)52+m.
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2. Lemmas

In order to prove Theorems 1.1 and 1.2, we need the following known results:
Lemma 2.1 (see [2]). Let G be a k-connected graph of order n > 3. If 8 < k, then G is Hamiltonian.
Lemma 2.2 (see [2]). Let G be a k-connected graph of order n. If < k + 1, then G is traceable.

Lemma 2.3 (see [5]). Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(z) + d(y) > n+ 1 for any
x € Aand any y € B with xy ¢ E(G), then G is Hamiltonian.

Lemma 2.4 (see [3]). Let m, M, and v, (k=1,2,--- ,n) be real numbers satisfying 0 < m < vy, < M. Then
> Z <t A +ZJ\\44) n’. (1)
k=1 k=1

If M > m, then the equality sign in (1) holds if and only if n is an even; while, at the same time, for n/2 values of k one has
v = m and for the remaining n/2 values of k one has v, = M. If M = m, then the equality in (1) always holds.

Notice that Lemma 2.4 is Corollary 4 on Page 67 in [3]; also, see [6].

3. Proofs

Proof of Theorem 1.1. Let G be a k-connected (k > 2) graph with n > 3 vertices and e edges satisfying the conditions in
Theorem 1.1. Suppose that G is not Hamiltonian. Then Lemma 2.1 implies that 8 > k + 1. Also, we have that

n>2+1>2k+1,

otherwise § > k > n/2 and G is Hamiltonian. Let I := {u,us,...,us } be a maximum independent set in G. Then
I:={uy,us,...,uxs1 } is an independent set in G. Thus

D d(u)=|EQIV -1 < Y d(v).
uel veV -1

Since

Z d(u) + Z d(v) = 2e,

uecl veV -1

we have that

uel veV—-I

Let V — I = {v1,v2,...,0n_(k41) }- By Cauchy-Schwarz inequality, we have

n—(k+1) n—(k+1) —(k+1) 2
Z 12 Z d2(vr > Z d(vy) | > e
r=1 r=1

Thus,
n—(k+1) 9

; dQ(Ur) > m

Consequently, we obtain

= (k+1)6%+ < Zd2 Z d*(v) = Z d?(v)

uel veV—I veV

Notice that 0 < 20 < d(u) + d(v) < 2A for each edge uv in G. By Lemma 2.4, we have

(204+28)° 5, (6+8)° < ) S 1 _(20+20)

4(20) (2A)6 ~ Y T4MsA = = uveEd ) +d(v) = 4(20) (2A) €
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Hence, we have
2

M= @) =Y Ew+ Y &)= (k+1)5+ %

veV uel veV—I
and
2: 2: @5+2AP62
uveFE uwveFE d + d 4 (26) (2A)
Therefore,
> dP(u) = (k+1)5°
uel
and )
n—(k+1) n—(k+1) n—(k+1)
Z 12 Z d*(v,) = Z d(v,) | =é2.
r=1 r=1 r=1
So, d(u1) = d(ug) = -+ = d(ug41) = 9, 61 := d(v1) = d(v2) = --- = d(vy,—(k+1)) > 0, and ) _\,_;d(v) = e which implies that

> werd(u) = e and G is a bipartite graph with partition sets of / and V' — I.

Ifo =A,then (k+1)d = (n—(k+1))01 = (n—(k+1))d. Thus, n = 2k+2 and Lemma 2.3 implies that G is Hamiltonian,
which is a contradiction.

Now, assume that § < A. Since

(26 +2A)?
D (d v) D d(u +d = 4(20) (2A)62’

uveE uveE

from Lemma 2.4, it follows that e must be even and there exists an edge zy such that d(z) + d(y) = 26, where « € I and
y € V—I, and an edge zw such that d(z)+d(w) = 2A, where w € I and z € V—I. Hence, 26 = d(z)+d(y) = 0+61 = d+A > 20,
which is a contradiction. This completes the proof of Theorem 1.1. O

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1. For the sake of completeness, we still present a full
proof of Theorem 1.2.

Proof of Theorem 1.2. Let G be a k-connected (k > 1) graph with n > 9 vertices and e edges satisfying the conditions in
Theorem 1.2. Suppose that G is not traceable. Then Lemma 2.2 implies that 5 > k+2. Also, we have that n > 26+2 > 2k+2
otherwise 6 > k > (n — 1)/2 and G is traceable. Let I1 := {uq,us,...,us } be a maximum independent set in G. Then,
I:={wuj,us,...,up+2 } is an independent set in G. Thus,

D d(w)=|E(LV-T)|< > d).

uel vEV T
Since
S dw)+ > dv) =
uel veV -1
we have
ddu)y<e< Y d(v).
uel veV -1

Let V — I = {v1,v2,...,0p_(k+2) }. By Cauchy-Schwarz inequality, we have

n—(k+2)  n—(k+2) ~(k+2) 2
Z 12 Z d*(v,) > Z dv.) | > e
r=1 r=1

Thus,
n—(k+2) 9

D (S P —
o n—(k+2)
Therefore,

= (k +2)6% + k+2 ZdQ + > ) =) d*(v)

veV -1 veV
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Notice that 0 < 20 < d(u) + d(v) < 2A for every edge uv in G. By Lemma 2.4, we have

(26 + 2A)2 (6+A)?2 o2 9 1 (26 + 2A)2
T 2o N2« d?( = d(u) +d(v <
4(26) (2A) ANJA v%‘:/ WZE:E( (u) (v)) e d(u) +d(v) — 4(29) (2A)
Thus,
2
_ 20,0\ 2 20, 2, <
N=>Y d@w) =) dw+ Y d @) =(k+2)s T D)
veV vel veV -1
and (26 2A)?
_|_

Z (u) +d(v Z e?

uveE uveE d + d 4 (25) (ZA)
Therefore,

> d(v) = (k +2)6°
vel

and

n—(k+2) n—(k+2) —(k+2) 2

Z Z d2v,«— Z d(vy) = €2
r=1

So d(uy) = d(uz) = - -+ = d(uq2) =6, 01 := d(v1) = d(v2) = -+ = d(vp—(k42)) = 0,and ) ., ;d(v) = e, which implies that

> wer d(u) = e and G is a bipartite graph with partition sets of / and V' — I.
If 6 = A, then (k+2)0 = (n — (k4 2))01 = (n — (k + 2))0. Thus, n = 2k + 4. Since n = 2k + 4 > 9, we have that k£ > 3.
Thus, Lemma 2.3 implies that G is Hamiltonian and therefore G is traceable, which is a contradiction.
Next, we assume that § < A. Since
(26 +2A)2
D (dlu) +d() D o +d 1@ @A)

uveE wweE

from Lemma 2.4 it follows that e must be even and there must exist an edge xy such that d(z) + d(y) = 29, where z € I and
y € V—I, and an edge zw such that d(z)+d(w) = 2A, where w € I and z € V—I. Hence, 2§ = d(z)+d(y) = §+61 = 6+A > 26,
which is again a contradiction. This completes the proof of Theorem 1.2. O

From the proofs of Theorem 1.1 and Theorem 1.2, the following corollary is obtained:

Corollary 3.1. Let G be a graph with n vertices and e > 1 edges. Then

2
H(G)S%m )
where )
Y
Q=P+ — 5

The equality in (2) holds if and only if G is a regular balanced bipartite graph.

Proof of Corollary 3.1. Let I := {uj,us, ..., us } be a maximum independent set in G. Since e > 1, we have |I| < n. Thus,
|V — I| > 0. From the proof of Theorem 1.1, we have

Q=+ S <P Y E) = ¢

uel veV -1 veV
d
o e — 2 _ 2204280, (0442,
( )_WZ;E d(uw) + d(v) = 40(20)20) T 2qQA ¢
If
(64 A)?2
HG) = g5a

then from the proof of Theorem 1.1, it follows that G is bipartite with two partition sets of 7 and V — I such that d(u) = 6
for each vertex u € I, d(v) = 0, for each vertex v € V —I,and e = 6 = (n — 8)d;. If § = A, then 8§ = (n — 8)d1 = (n — 5)0.
Thus, n = 23 and G is a regular balanced bipartite graph.
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If § < A, then Lemma 2.4 implies that e is even and there exists an edge zy, where x € I and y € V — I, such that
d(z)+d(y) = 26, and an edge zw, where z € I andw € V—1I, such that d(z)+d(w) = 2A. Since d(z)+d(y) = §+1 = §+A > 26,
which is a contradiction.
If G is a regular balanced bipartite graph, simple computations yield
(0+A)? 5, n

G =550 =3

This completes the proof of Corollary 3.1. O
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