Research Article **The harmonic index and some Hamiltonian properties of graphs**

Rao Li[∗](#page-0-0)

Department of Computer Science, Engineering, and Mathematics, University of South Carolina Aiken, Aiken, SC 29801, USA

(Received: 25 August 2024. Received in revised form: 28 November 2024. Accepted: 9 December 2024. Published online: 24 December 2024.)

© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (<www.creativecommons.org/licenses/by/4.0/>).

Abstract

Let $G=(V,E)$ be a graph. The harmonic index of G is defined as $\sum_{uv\in E}\frac{2}{d(u)+d(v)},$ where $d(u)$ and $d(v)$ denote the degrees of vertices u and v in G , respectively. In this paper, conditions involving the harmonic index for some Hamiltonian properties of a graph are presented. An upper bound for the harmonic index of a graph is also presented.

Keywords: harmonic index; Hamiltonian graph; traceable graph.

2020 Mathematics Subject Classification: 05C45, 05C09.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notations and terminologies not defined here follow those in [\[1\]](#page-4-0). Let $G = (V(G), E(G))$ be a graph with n vertices and e edges. The degree of a vertex v is denoted by $d_G(v)$ (or simply, $d(v)$). We use δ and Δ to denote the minimum degree and maximum degree of G, respectively. A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a graph G is an independent set of the largest possible size. The independence number, denoted by $\beta(G)$, of a graph G is the cardinality of a maximum independent set in G. For disjoint vertex subsets X and Y of $V(G)$, we use $E(X, Y)$ to denote the set of all the edges in $E(G)$ such that one end vertex of each edge is in X and the other end vertex of the edge is in Y. Particularly, $E(X, Y) := \{ xy \in E(G) : x \in X, y \in Y \}$. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path.

The first Zagreb index was introduced by Gutman and Trinajstic in $[4]$ $[4]$. For a graph G, the first Zagreb index is defined as $\sum_{v\in V(G)}d^2(v)=\sum_{uv\in E(G)}(d(u)+d(v)).$ Zhou and Trinajstić in [[7\]](#page-4-2) introduced the concept of the general sum-connectivity index of a graph. The general sum-connectivity index, denoted by $\chi_\alpha(G)$, of a graph G is defined as $\sum_{uv\in E(G)}(d(u)+d(v))^\alpha,$ where α is a real number such that $\alpha \neq 0$. Obviously, $\chi_1(G)$ is the same as the first Zagreb index of a graph G. Also, $2\chi_{-1}(G)$ is known as the harmonic index, denoted by $H(G)$, of a graph G. In this paper, we use the harmonic index of a graph to obtain sufficient conditions for Hamiltonian and traceable graphs. The main results are as follows.

Theorem 1.1. *Let* G *be a* k-connected graph with n vertices and e edges, where $k \geq 2$ and $n \geq 3$. If

$$
H(G) \ge \frac{(\delta + \Delta)^2}{2M\delta\Delta}e^2,
$$

then G *is Hamiltonian, where*

$$
M = (k+1)\delta^2 + \frac{e^2}{n - (k+1)}.
$$

Theorem 1.2. Let G be a k-connected with n vertices and e edges, where $k > 1$ and $n > 9$. If

$$
H(G) \ge \frac{(\delta + \Delta)^2}{2N\delta\Delta}e^2,
$$

then G *is traceable, where*

$$
N = (k+2)\delta^2 + \frac{e^2}{n - (k+2)}.
$$

[∗]E-mail address: raol@usca.edu

2. Lemmas

In order to prove Theorems [1.1](#page-0-1) and [1.2,](#page-0-2) we need the following known results:

Lemma 2.1 (see [\[2\]](#page-4-3)). Let G be a k-connected graph of order $n \geq 3$. If $\beta \leq k$, then G is Hamiltonian.

Lemma 2.2 (see [\[2\]](#page-4-3)). Let G be a k-connected graph of order n. If $\beta \leq k+1$, then G is traceable.

Lemma 2.3 (see [\[5\]](#page-4-4)). Let G be a balanced bipartite graph of order $2n$ with bipartition (A, B). If $d(x) + d(y) \geq n + 1$ for any $x \in A$ and any $y \in B$ with $xy \notin E(G)$, then G is Hamiltonian.

Lemma 2.4 (see [\[3\]](#page-4-5)). *Let* m, M, and γ_k (k = 1, 2, \cdots , n) *be real numbers satisfying* $0 < m \leq \gamma_k \leq M$. Then

$$
\sum_{k=1}^{n} \gamma_k \sum_{k=1}^{n} \frac{1}{\gamma_k} \le \frac{(m+M)^2}{4mM} n^2.
$$
 (1)

If M > m*, then the equality sign in* [\(1\)](#page-1-0) *holds if and only if* n *is an even; while, at the same time, for* n/2 *values of* k *one has* $\gamma_k = m$ and for the remaining $n/2$ values of k one has $\gamma_k = M$. If $M = m$, then the equality in [\(1\)](#page-1-0) always holds.

Notice that Lemma [2.4](#page-1-1) is Corollary 4 on Page 67 in [\[3\]](#page-4-5); also, see [\[6\]](#page-4-6).

3. Proofs

Proof of Theorem [1.1.](#page-0-1) Let G be a k-connected ($k \geq 2$) graph with $n \geq 3$ vertices and e edges satisfying the conditions in Theorem [1.1.](#page-0-1) Suppose that G is not Hamiltonian. Then Lemma [2.1](#page-1-2) implies that $\beta > k + 1$. Also, we have that

$$
n \ge 2\delta + 1 \ge 2k + 1,
$$

otherwise $\delta \geq k \geq n/2$ and G is Hamiltonian. Let $I_1 := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Then $I := \{u_1, u_2, \ldots, u_{k+1}\}$ is an independent set in G. Thus

$$
\sum_{u \in I} d(u) = |E(I, V - I)| \le \sum_{v \in V - I} d(v).
$$

Since

$$
\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e,
$$

we have that

$$
\sum_{u \in I} d(u) \le e \le \sum_{v \in V - I} d(v).
$$

Let $V - I = \{v_1, v_2, ..., v_{n-(k+1)}\}\$. By Cauchy-Schwarz inequality, we have

$$
\sum_{r=1}^{n-(k+1)} 1^2 \sum_{r=1}^{n-(k+1)} d^2(v_r) \ge \left(\sum_{r=1}^{n-(k+1)} d(v_r)\right)^2 \ge e^2.
$$

Thus,

$$
\sum_{r=1}^{n-(k+1)} d^{2}(v_{r}) \ge \frac{e^{2}}{n-(k+1)}.
$$

Consequently, we obtain

$$
M := (k+1)\delta^2 + \frac{e^2}{n - (k+1)} \le \sum_{u \in I} d^2(u) + \sum_{v \in V - I} d^2(v) = \sum_{v \in V} d^2(v).
$$

Notice that $0 < 2\delta < d(u) + d(v) < 2\Delta$ for each edge uv in G. By Lemma [2.4,](#page-1-1) we have

$$
\frac{(2\delta+2\Delta)^2}{4(2\delta)(2\Delta)}e^2 = M\frac{(\delta+\Delta)^2}{4M\delta\Delta}e^2 \le \sum_{v\in V}d^2(v)\frac{H(G)}{2} = \sum_{uv\in E}(d(u)+d(v))\sum_{uv\in E}\frac{1}{d(u)+d(v)} \le \frac{(2\delta+2\Delta)^2}{4(2\delta)(2\Delta)}e^2.
$$

Hence, we have

$$
M = \sum_{v \in V} d^2(v) = \sum_{u \in I} d^2(u) + \sum_{v \in V - I} d^2(v) = (k+1)\delta^2 + \frac{e^2}{n - (k+1)}
$$

and

$$
\sum_{uv \in E} (d(u) + d(v)) \sum_{uv \in E} \frac{1}{d(u) + d(v)} = \frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)} e^2.
$$

Therefore,

$$
\sum_{u \in I} d^2(u) = (k+1)\delta^2
$$

and

$$
\sum_{r=1}^{n-(k+1)} 1^2 \sum_{r=1}^{n-(k+1)} d^2(v_r) = \left(\sum_{r=1}^{n-(k+1)} d(v_r)\right)^2 = e^2.
$$

 $\textbf{So, } d(u_1)=d(u_2)=\cdots=d(u_{k+1})=\delta,\, \delta_1:=d(v_1)=d(v_2)=\cdots=d(v_{n-(k+1)})\geq \delta, \text{ and } \sum_{v\in V-I}d(v)=e \text{ which implies that }$ $\sum_{u\in I} d(u) = e$ and G is a bipartite graph with partition sets of I and $V-I.$

If $\delta = \Delta$, then $(k+1)\delta = (n-(k+1))\delta_1 = (n-(k+1))\delta$. Thus, $n = 2k+2$ and Lemma [2.3](#page-1-3) implies that G is Hamiltonian, which is a contradiction.

Now, assume that $\delta < \Delta$. Since

$$
\sum_{uv \in E} (d(u) + d(v)) \sum_{uv \in E} \frac{1}{d(u) + d(v)} = \frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)} e^2,
$$

from Lemma [2.4,](#page-1-1) it follows that e must be even and there exists an edge xy such that $d(x) + d(y) = 2\delta$, where $x \in I$ and $y \in V-I$, and an edge zw such that $d(z)+d(w) = 2\Delta$, where $w \in I$ and $z \in V-I$. Hence, $2\delta = d(x)+d(y) = \delta+\delta_1 = \delta+\Delta > 2\delta$, which is a contradiction. This completes the proof of Theorem [1.1.](#page-0-1) \Box

The proof of Theorem [1.2](#page-0-2) is similar to the proof of Theorem [1.1.](#page-0-1) For the sake of completeness, we still present a full proof of Theorem [1.2.](#page-0-2)

Proof of Theorem [1.2.](#page-0-2) Let G be a k-connected ($k \ge 1$) graph with $n \ge 9$ vertices and e edges satisfying the conditions in Theorem [1.2.](#page-0-2) Suppose that G is not traceable. Then Lemma [2.2](#page-1-4) implies that $\beta \geq k+2$. Also, we have that $n \geq 2\delta+2 \geq 2k+2$ otherwise $\delta \ge k \ge (n-1)/2$ and G is traceable. Let $I_1 := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Then, $I := \{u_1, u_2, ..., u_{k+2}\}$ is an independent set in G. Thus,

$$
\sum_{u \in I} d(u) = |E(I, V - I)| \le \sum_{v \in V - I} d(v).
$$

Since

$$
\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e,
$$

we have

$$
\sum_{u \in I} d(u) \le e \le \sum_{v \in V - I} d(v).
$$

Let $V - I = \{v_1, v_2, ..., v_{n-(k+2)}\}$. By Cauchy-Schwarz inequality, we have

$$
\sum_{r=1}^{n-(k+2)} 1^2 \sum_{r=1}^{n-(k+2)} d^2(v_r) \ge \left(\sum_{r=1}^{n-(k+2)} d(v_r)\right)^2 \ge e^2.
$$

Thus,

$$
\sum_{r=1}^{n-(k+2)} d^{2}(v_{r}) \ge \frac{e^{2}}{n-(k+2)}.
$$

Therefore,

$$
N := (k+2)\delta^2 + \frac{e^2}{n - (k+2)} \le \sum_{u \in I} d^2(u) + \sum_{v \in V-I} d^2(v) = \sum_{v \in V} d^2(v).
$$

Notice that $0 < 2\delta \leq d(u) + d(v) \leq 2\Delta$ for every edge uv in G. By Lemma [2.4,](#page-1-1) we have

$$
\frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)}e^2 = N\frac{(\delta + \Delta)^2}{4N\delta\Delta}e^2 \le \sum_{v \in V} d^2(v)\frac{H(G)}{2} = \sum_{uv \in E} (d(u) + d(v))\sum_{uv \in E} \frac{1}{d(u) + d(v)} \le \frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)}e^2
$$

Thus,

$$
N = \sum_{v \in V} d^2(v) = \sum_{v \in I} d^2(v) + \sum_{v \in V - I} d^2(v) = (k+2)\delta^2 + \frac{e^2}{n - (k+2)}
$$

and

and

$$
\sum_{uv \in E} (d(u) + d(v)) \sum_{uv \in E} \frac{1}{d(u) + d(v)} = \frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)} e^2.
$$

Therefore,

$$
\sum_{v \in I} d^2(v) = (k+2)\delta^2
$$

$$
\sum_{r=1}^{n-(k+2)} 1^2 \sum_{r=1}^{n-(k+2)} d^2(v_r) = \left(\sum_{r=1}^{n-(k+2)} d(v_r)\right)^2 = e^2.
$$

 $\textbf{So } d(u_1)=d(u_2)=\cdots=d(u_{k+2})=\delta,\, \delta_1:=d(v_1)=d(v_2)=\cdots=d(v_{n-(k+2)})\geq \delta, \text{ and } \sum_{v\in V-I}d(v)=e, \text{ which implies that } d(v_1)=d(v_2)=\cdots=d(v_{n-(k+2)})\geq \delta.$ $\sum_{u\in I} d(u) = e$ and G is a bipartite graph with partition sets of I and $V-I.$

If $\delta = \Delta$, then $(k + 2)\delta = (n - (k + 2))\delta_1 = (n - (k + 2))\delta$. Thus, $n = 2k + 4$. Since $n = 2k + 4 \ge 9$, we have that $k \ge 3$. Thus, Lemma [2.3](#page-1-3) implies that G is Hamiltonian and therefore G is traceable, which is a contradiction.

Next, we assume that $\delta < \Delta$. Since

$$
\sum_{uv \in E} (d(u) + d(v)) \sum_{uv \in E} \frac{1}{d(u) + d(v)} = \frac{(2\delta + 2\Delta)^2}{4(2\delta)(2\Delta)} e^2,
$$

from Lemma [2.4](#page-1-1) it follows that e must be even and there must exist an edge xy such that $d(x) + d(y) = 2\delta$, where $x \in I$ and $y \in V-I$, and an edge zw such that $d(z)+d(w) = 2\Delta$, where $w \in I$ and $z \in V-I$. Hence, $2\delta = d(x)+d(y) = \delta+\delta_1 = \delta+\Delta > 2\delta$, which is again a contradiction. This completes the proof of Theorem [1.2.](#page-0-2) \Box

From the proofs of Theorem [1.1](#page-0-1) and Theorem [1.2,](#page-0-2) the following corollary is obtained:

Corollary 3.1. Let G be a graph with n vertices and $e \geq 1$ edges. Then

$$
H(G) \le \frac{(\delta + \Delta)^2}{2Q\delta\Delta}e^2,\tag{2}
$$

where

$$
Q = \beta \delta^2 + \frac{e^2}{n - \beta}.
$$

The equality in [\(2\)](#page-3-0) *holds if and only if* G *is a regular balanced bipartite graph.*

Proof of Corollary [3.1.](#page-3-1) Let $I := \{u_1, u_2, ..., u_\beta\}$ be a maximum independent set in G. Since $e \geq 1$, we have $|I| < n$. Thus, $|V - I| > 0$. From the proof of Theorem [1.1,](#page-0-1) we have

$$
Q := \beta \delta^2 + \frac{e^2}{n - \beta} \le \sum_{u \in I} d^2(u) + \sum_{v \in V - I} d^2(v) = \sum_{v \in V} d^2(v)
$$

and

$$
H(G) = \sum_{uv \in E} \frac{2}{d(u) + d(v)} \le \frac{2(2\delta + 2\Delta)^2}{4Q(2\delta)(2\Delta)} e^2 = \frac{(\delta + \Delta)^2}{2Q\delta\Delta} e^2.
$$

If

$$
H(G) = \frac{(\delta + \Delta)^2}{2Q\delta\Delta}e^2,
$$

then from the proof of Theorem [1.1,](#page-0-1) it follows that G is bipartite with two partition sets of I and $V - I$ such that $d(u) = \delta$ for each vertex $u \in I$, $d(v) = \delta_1$ for each vertex $v \in V - I$, and $e = \beta \delta = (n - \beta)\delta_1$. If $\delta = \Delta$, then $\beta \delta = (n - \beta)\delta_1 = (n - \beta)\delta_1$. Thus, $n = 2\beta$ and G is a regular balanced bipartite graph.

.

If $\delta < \Delta$, then Lemma [2.4](#page-1-1) implies that e is even and there exists an edge xy, where $x \in I$ and $y \in V - I$, such that $d(x)+d(y) = 2\delta$, and an edge zw, where $z \in I$ and $w \in V-I$, such that $d(z)+d(w) = 2\Delta$. Since $d(x)+d(y) = \delta+\delta_1 = \delta+\Delta > 2\delta$, which is a contradiction.

If G is a regular balanced bipartite graph, simple computations yield

$$
H(G) = \frac{(\delta + \Delta)^2}{2Q\delta\Delta}e^2 = \frac{n}{2}.
$$

This completes the proof of Corollary [3.1.](#page-3-1)

Acknowledgment

The author would like to thank the referees for their suggestions, which improved the initial version of this paper.

References

- [1] J. A. Bondy, U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London, 1976.
- [2] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, *Discrete Math.* 2 (1972) 111-113.
- [3] J. B. Diaz, F. T. Metcalf, Complementary inequalities I: inequalities complementary to Cauchy's inequalities for sums of real numbers, *J. Math Anal. Appl.* **9** (1964) 59–74.
- [4] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, total π-electron energy of alternant hydroncarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.

[5] J. Moon, L. Moser, On Hamiltonian bipartite graphs, *Israel J. Math.* **1** (1963) 163–165.

- [6] P. Schweitzer, Egy egyenlötlenség az aritmetikai középértékröl (An inequality concerning the arithmetic mean), Math. Phys. Lapok 23 (1914) 257-261.
- [7] B. Zhou, N. Trinajstic, On general sum-connectivity index, ´ *J. Math. Chem.* **47** (2010) 210–218.

 \Box