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Abstract
This paper first describes how to find the generating function for the sum of the areas under generalized Dyck paths (with an
arbitrary set of steps), using Motzkin paths as a motivating example. Then, it focuses on deriving functional equations for
the Motzkin and Dyck paths. Subsequently, it describes an algorithm to manipulate these functional equations for finding
‘perturbation expansions’ of the solutions, with applications to derive explicit generating functions for the sum of powers of
areas under Dyck and Motzkin paths for any desired power.
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1. Introduction

Motzkin paths were extensively studied in [3], and the sum of powers of areas under Dyck paths were nicely covered by
Robin Chapman [2]. The area under Dyck paths is also briefly explored in Example VII.26 of [4]. However, these works and
many others on these paths only used human ingenuity. In this paper, we demonstrate the power of symbolic computation
to get much further. We are interested in generating functions for the sum of the areas under paths in the xy−plane, with
a focus on Dyck and Motzkin paths.

Definition 1.1. A Motzkin path of length n is a walk in the xy−plane from the origin (0, 0) to (n, 0) with atomic steps
U := (1, 1), D := (1,−1), and F := (1, 0) that never goes below the x−axis.

For example, the following are some Motzkin paths of length 4:

UDUD UFFD UFDF FUDF FFFF.

The areas of these paths are 2, 4, 3, 1, and 0, respectively.
The bivariate weight enumerator for Motzkin paths with length n and aream satisfies the following functional equation:

M(x, q) = 1 + xM(x, q) + x2qM(qx, q)M(x, q).

To prove this, letM denote the set of all Motzkin paths. Note that any path inMmust fall into exactly one of the following
cases: the empty path, Motzkin paths that start with a flat step, or Motzkin paths that start with an up step.

If M ∈M is the empty path, then it clearly has both area and length 0. Thus the bivariate weight enumerator is

m0(q, x) = 1

If M begins with a flat step F , then we can write
M = FM0,

where M0 must also be a Motzkin path with the same area as M , since it still starts at height 0. Thus, the bivariate weight
enumerator for this case of Motzkin paths is

m1(q, x) = xM(q, x)

If M begins with the step U , then let D denote the first time M returns to the x−axis and write

M = UM1DM0.
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Note that M1 must be a Motzkin path shifted to height 1, and M0 is a Motzkin path starting at height 0. Since M0 begins
at height 0, the area under the Motzkin path M0 is the same as the area under the portion of M it represents. Since M1 is
shifted to height 1, however, every step in M1 has one more unit block below it. Thus, every step x in M1 must be replaced
with qx to get the correct area for that portion of M . Since the extra U and D steps give a combined area of 1, the bivariate
weight enumerator for Motzkin paths beginning with an up step is

m2(q, x) = qx2M(qx, q)M(q, x),

resulting in the desired weight enumerator for all Motzkin paths.

Definition 1.2. A Dyck path of length n is a walk in the xy−plane from the origin (0, 0) to (n, 0) with atomic steps U := (1, 1)

and D := (1,−1) that never goes below the x−axis.

Similarly, the bivariate weight enumerator for Dyck paths with length n and area m satisfies the following functional
equation:

D(x, q) = 1 + x2qD(qx, q)D(x, q).

Maple package
This article is accompanied by the Maple package qEW.txt and some sample outputs. The accompanying files can be found
at the following webpage:

https://ajbu1.github.io/Papers/MotzArea/MotzArea.html.

Using ‘Symbol-Crunching’ to find many terms of the area-weight-enumerators of general-
ized Dyck walks of length n

In addition to its independent interest, the dynamical programming approach to generate many terms of the sequence of
area weight enumerators for general Dyck paths (with an arbitrary set of steps) will serve to confirm the correctness of the
algorithm in the next section.

The procedure qnwdK(S,K,q) in our Maple package uses dynamical programming to find the enumerating function for
the area of walks with steps in S of length n = 0, . . . ,K that start and end at height 0 and never have negative height. Note
that S can be any set of steps, where the Dyck case is S = {[1, 1], [1,−1]} and the Motzkin case is S = {[1, 1], [1,−1], [1, 0]}.

First, consider Pm,n, the set of paths of length n ≥ 0 with steps in S that end at height m ≥ 0 and never have negative
height. Let Am,n(q) be the enumerating function for the area of paths in Pm,n.

Clearly, for n = 0, the empty path gives an area of 0. Thus, the enumerating function is

Am,0(q) = 1.

For n = 1, the only path that can end at height m is the single step {(1,m)}, which has area m
2 . Thus,

Am,1(q) =

q
m
2 , (1,m) ∈ S

0, (1,m) 6∈ S.

For n > 1, consider each possible final step for any path in Pm,n. A step s ∈ S can be the last step if m − s ≥ 0 and there
exists a path P of length n− 1 with steps in S that ends at height m− s and never has a negative height. In other words,

Pm,n = {Ps|s ∈ S, m− s ≥ 0, P ∈ Pm−s,n−1}.

The area under the last step (1, s) is 2m−s
2 . Thus, the weight enumerator for the area of paths in Pm,n is

Am,n(q) =
∑
s∈S

m−s≥0

q
2m−s

2 Am−s,n−1(q).

This process is implemented in the procedure qnmwd(S,n,m,q), which is then used in qnwdK(S,K,q). For example, looking
at Motzkin paths,

qnwdK({[1,1],[1,0],[1,-1]},5,q)

outputs
[1, 1, q + 1, q2 + 2q + 1, q4 + q3 + 3q2 + 3q + 1, q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q + 1].
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Note that, to avoid negative height, any Motzkin path must end with D = (1,−1) or F = (1, 0). Since the paths end at
height 0, the area under these steps are 1

2 and 0, respectively. Thus,

A0,n = q
1
2A1,n−1 +A0,n−1.

Breaking down the algorithm described above to find the first four terms of this outputted list,

• The only path of length 1 is [F ] = [(1, 0)], so
A0,1(q) = 1.

• Since P1,1 = {[U ]} = {[(1, 0)]}, it follows that A1,1(q) = q
1
2 . Thus,

A0,2 = q
1
2A1,1(q) +A0,1(q) = q + 1.

• For paths of length 3 ending with D = (1,−1), note that

P1,2 = {FU,UF} = {[(1, 0), (1, 1)], [(1, 1), (1, 0)]},

and so A1,2 = q
1
2 + q

3
2 . Thus,

A0,3 = q
1
2A1,2(q) +A0,2(q) = q

1
2 (q

1
2 + q

3
2 ) + q + 1 = q2 + 2q + 1.

• For paths of length 4, note that

W1,3 = {FFU,FUF,UFF,UDU,UUD}

= {[(1, 0), (1, 0), (1, 1)], [(1, 0), (1, 1), (1, 0)], [(1, 1), (1, 0), (1, 0)], kL[(1, 1), (1,−1), (1, 1)], [(1, 1), (1, 1), (1,−1)]}.

Therefore, A1,3 = q
1
2 + 2q

3
2 + q

5
2 + q

7
2 , and

A0,4 = q
1
2A1,3(q) +A0,3(q) = q4 + q3 + 3q2 + 3q + 1.

2. Finding dk

dqk [f(x, q)]
∣∣
q=1

If the weight enumerator of a set of paths is satisfied by the following functional equation:

f(x, q) = P (x, q) +Q(x, q)f(x, q) +R(x, q)f(x, q)f(qx, q)

for some given bivariate polynomials P (x, q), Q(x, q), and R(x, q), then plugging in q = 1 gives

f(x, 1) = P (x, 1) +Q(x, 1)f(x, 1) +R(x, 1)f(x, 1)2,

which we can use to solve for f(x, 1). The order n Taylor polynomial of f(x, q) about q = 1 satisfies
n∑

k=0

(q − 1)k

k!
f (k)(x, 1) = P +Q

n∑
k=0

(q − 1)k

k!
f (k)(x, 1) +R

n∑
k=0

(q − 1)k

k!
f (k)(x, 1)

n∑
k=0

(q − 1)k

k!
f (k)(qx, 1),

where f (k)(x, q) = dk

dqk
f(x, q). Looking at the coefficient of (q − 1)k, we can express f (k)(x, 1) as the sum of derivatives

f (`)(x, 1) where ` < k and derivatives of functions of x with respect to x. Since we have an expression for f(x, 1), we can
simply compute any order derivative with respect to x as well as fq(x, 1). Thus, to find f (n)(x, 1), we can repeat this process
with the coefficient of f (k)(x, 1) for k = 1, . . . , n.

This process is implemented by the procedure DerK(P,Q,R,q,x,K,f), which outputs a list whose k-th entry is given as
follows:

dk−1

dqk−1
[f(x, q)]

∣∣
q=1

.

Rather than outputting algebraic equations as seen in [1], this procedure produces closed-form expressions in terms of
radicals.
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Motzkin paths
As previously noted, the Motzkin paths satisfy the following functional equation:

M(x, q) = 1 + xM(x, q) + x2qM(qx, q)M(x, q).

Solving this functional equation for q = 1, we get that

M(x, 1) =
1− x+

√
−3x2 − 2x+ 1

2x2
or M(x, 1) =

1− x−
√
−3x2 − 2x+ 1

2x2
.

Since only the second equation has a Taylor series expansion about x = 0, we know that this is M(x, 1). Now, for finding
the first derivative, note that

n∑
k=0

(q − 1)k

k!
M (k)(x, 1) = 1 + x

n∑
k=0

(q − 1)k

k!
M (k)(x, 1) + qx2

n∑
k=0

(q − 1)k

k!
M (k)(x, 1)

n∑
k=0

(q − 1)k

k!
M (k)(qx, 1).

The coefficient of q − 1 on both sides give us

Mq(x, 1) = xMq(x, 1) + x2M(x, 1)

(
xMx(x, 1) + 2Mq(x, 1) +M(x, 1)

)
.

Therefore,
Mq(x, 1) =

x3M(x, 1)Mx(x, 1) + x2M2(x, 1)

1− x− 2x2M(x, 1)
.

Plugging in

M(x, 1) =
1− x−

√
−3x2 − 2x+ 1

2x2
,

we get

Mq(x, 1) =

(
x− 1 +

√
−3x2 − 2x+ 1

)2
4x2(−3x2 − 2x− 1)

.

To find M (n)(x, 1), we can repeat this process with the coefficient of M (k)(x, 1) for k ≤ n. In a little over 2 seconds,

DerK(1,x,x2*q,q,x,10,f),

can output the list whose entries are
M (k)(q, 1) :=

dk

dqk
[M(x, q)] |q=1

for k = 0, . . . , 10. For example, looking at the first two terms of the output, we have

M(x, 1) =
1− x−

√
−3x2 − 2x+ 1

2x2
and Mq(x, 1) =

(
1− x−

√
−3x2 − 2x+ 1

)2
4x2(−3x2 − 2x+ 1)

.

The Maclaurin series of M(x, 1) is

1 + x+ 2x2 + 4x3 + 9x4 + 21x5 + 51x6 + 127x7 + 323x8 + 835x9 + 2188x10 + 5798x11 + 15511x12 +O(x13),

and it is the weight enumerator of the number of Motzkin paths of length n, which is A001006 on [5], see

https://oeis.org/A001006.

The Maclaurin series of Mq(x, 1) is

x2 + 4x3 + 16x4 + 56x5 + 190x6 + 624x7 + 2014x8 + 6412x9 + 20219x10 + 63284x11 + 196938x12 +O(x13),

which is the weight enumerator of the total area under all Motzkin paths of length n and A057585 on [5], see

https://oeis.org/A057585.
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We also get higher factorial moments. For example,
Mqq(x, 1) = 1/2(6(−3x2 − 2x + 1)1/2x2 + 9x2 − (−3x2 − 2x + 1)1/2x + 6x + 3(−3x2 − 2x + 1)1/2 − 3)(−1 + x + (−3x2 − 2x

+ 1)1/2)/(3x2 + 2x− 1)3,

and
Mqqq(x, 1) = −3/2(9(−3x2 − 2x + 1)1/2x4 − 9x5 + 18(−3x2 − 2x + 1)1/2x3 + 51x4 − 23(−3x2 − 2x + 1)1/2x2 − 19x3 + 4(−3x2

− 2x+ 1)1/2x+ 29x2 − 4(−3x2 − 2x+ 1)1/2 − 8x+ 4)(x− 1 + (−3x2 − 2x+ 1)1/2)/(3x2 + 2x− 1)4.

The Maclaurin series of Mqq(x, 1) is

2x3 + 24x4 + 142x5 + 720x6 + 3224x7 + 13478x8 + 53508x9 + 204698x10 +O(x11),

and the Maclaurin series of Mqqq(x, 1) is

30x4 + 336x5 + 2742x6 + 17268x7 + 95388x8 + 477900x9 + 2235876x10 +O(x11).

The weight enumerator for the sum of the squares of the areas of Motzkin paths of length n is given by the Maclaurin
series of Mqq(x, 1) +Mq(x, 1),

x2 + 6x3 + 40x4 + 198x5 + 910x6 + 3848x7 + 15492x8 + 59920x9 + 224917x10 +O(x11),

which is A367778 on [5], https://oeis.org/A367778.
The weight enumerator for the sum of the cubes of the areas of Motzkin paths of length n is given by the Maclaurin

series of Mqqq(x, 1) + 3Mqq(x, 1) +Mq(x, 1),

x2 + 10x3 + 118x4 + 818x5 + 5092x6 + 27564x7 + 137836x8 + 644836x9 + 2870189x10 +O(x11),

which is A367779 on [5], https://oeis.org/A367779.

Dyck paths
Looking at Dyck paths, we input

DerK(1,0,x2*q,q,x,10,f).

The first four terms of the output gives

D(x, 1) =
1−
√
1− 4x2

2x2
,

Dq(x, 1) =
(1−

√
1− 4x2)2

16x4 − 4x2
,

Dqq(x, 1) =
(8x2
√
1− 4x2 + 12x2 + 3

√
1− 4x2 − 3)(−1 +

√
1− 4x2)

2
,

Dqqq(x, 1) =
−6(4x4

√
−4x2 + 1 + 16x4 − 7x2

√
−4x2 + 1 + 7x2 −

√
−4x2 + 1 + 1)(−1 +

√
−4x2 + 1)

(4x2 − 1)4
.

The Maclaurin series of D(x, 1) is

1 + x2 + 2x4 + 5x6 + 14x8 + 42x10 + 132x12 + 429x14 + 1430x16 +O(x18),

which is the weight enumerator of all Dyck paths of length n and A000108 on [5], https://oeis.org/A000108. The Maclaurin
series of Dq(x, 1) is

x2 + 6x4 + 29x6 + 130x8 + 562x10 + 2380x12 + 9949x14 + 41226x16 +O(x18),

the weight enumerator for the total area of all Dyck paths of length n, which is A008549 on [5], https://oeis.org/A008549.
The Maclaurin series of Dqq(x, 1) is

14x4 + 160x6 + 1226x8 + 7864x10 + 45564x12 + 247136x14 + 1279810x16 + 6404424x18 +O(x20),

and the Maclaurin series of Dqqq(x, 1) is

24x4 + 840x6 + 11736x8 + 114744x10 + 922224x12 + 6541776x14 + 42543480x16 + 259525464x18 +O(x20).
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The weight enumerator for the sum of the squares of the areas of Dyck paths of length n is given by the Maclaurin series
of Dqq(x, 1) +Dq(x, 1),

x2 + 20x4 + 189x6 + 1356x8 + 8426x10 + 47944x12 + 257085x14 + 1321036x16 +O(x18),

which is A367780 on [5], https://oeis.org/A367780.
The weight enumerator for the sum of the cubes of the areas of Dyck paths of length n is given by the Maclaurin series

of Dqqq(x, 1) + 3Dqq(x, 1) +Dq(x, 1),

x2 + 72x4 + 1349x6 + 15544x8 + 138898x10 + 1061296x12 + 7293133x14 + 46424136x16 +O(x18).

This does not appear on OEIS [5] as of September 12, 2023.

3. Conclusion

In this paper, we demonstrate how to use dynamical programming to find the weight enumerator for the area paths of
length n with steps in a given set S that start and end at height 0 and never have negative height. We also describe how
to find the weight enumerator for such paths when, instead of a set of steps S, we are given bivariate polynomials P (x, q),
Q(x, q), and R(x, q) such that the weight enumerator f(x, q) satisfies

f(x, q) = P (x, q) +Q(x, q)f(x, q) +R(x, q)f(x, q)f(xq, q).

We then present a method for finding f (k)(x, 1) :=
dk

dqk
[f(x, q)]

∣∣
q=1

.
These methods are fully automated in the accompanying Maple package qEW.txt, displaying how the power of computer

algebra and using calculus allows us to generate quite a few moments. In the paper, we demonstrate these methods with
the bivariate weight enumerators for both Motzkin paths and Dyck paths with length n and area m. Moreover, we show
how these procedures can be used to produce the Maclaurin series of dk

dqk
[f(x, q)]

∣∣
q=1

, allowing us to find the generating
function for the total area under such paths of length n as well as for the sum of a given power of the areas.

For further study, we can look at the average areas and the variance. Given a family of paths, let a0(n) be the number of
such paths of length n, a1(n) be the total area under such paths of length n, and a2(n) be the sum of the squares of the areas
under such paths of length n. Using the accompanying Maple package qEW.txt, we can generate 10,000 (or more) terms
of the sequences of the average areas

{
a1(n)
a0(n)

}
and the variances

{
a2(n)
a0(n)

−
(

a1(n)
a0(n)

)2}
and use numerics for the asymptotics.
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