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Abstract
In 1968, Vizing conjectured that for every pair of graphs X and Y, the inequality γ(X�Y ) ≥ γ(X)γ(Y ) holds, where γ
stands for the domination number andX�Y is the Cartesian product ofX and Y. In a breakthrough result, Clark and Suen
[Electron. J. Combin. 7 (2000) #N4] proved that γ(X�Y ) ≥ 1

2
γ(X)γ(Y ). In this paper, a lower bound for γ(X�Y�Z) is

obtained using projections in the space. It is shown how the obtained bound implies the mentioned result of Clark and Suen.
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1. Introduction

Let G be a simple finite graph and let V (G) be its set of vertices. We say that a vertex u ∈ V (G) dominates a vertex v if
u = v or v is adjacent to u. A dominating set of G is a subset S of V (G) whose vertices dominate all the vertices of G. The
domination number of G, denoted as γ(G), is the size of a smallest dominating set of G.

The Cartesian product X�Y of two graphs X and Y is the graph whose vertex set is V (X)× V (Y ) and whose edge set
is defined as follows: Two vertices (x1, y1) and (x2, y2) are adjacent in X�Y if either x1 = x2 and y1 and y2 are adjacent in
Y, or y1 = y2 and x1 and x2 are adjacent in X. By definition, the Cartesian product of graphs is commutative, in the sense
that X�Y is isomorphic to Y�X. For y ∈ V (Y ), the subgraph of X�Y induced by {(x, y) | x ∈ V (X)}, is called an X-fiber
and denoted as Xy.

In 1968, Vizing conjectured in [6] that for every pair of graphsX and Y, γ(X�Y ) ≥ γ(X)γ(Y ). Since then, many authors
have found weaker lower bounds for γ(X�Y ). For example, Clark and Suen showed in [2], that γ(X�Y ) ≥ 1

2γ(X)γ(Y ).

This lower bound was improved by Suen and Tarr in [4], and recently by Zerbib in [7].
The result of Clark and Suen implies that for a triple of graphs, X, Y and Z, we have γ(X�Y�Z) ≥ 1

2γ(X�Y )γ(Z) ≥
1
4γ(X)γ(Y )γ(Z). The main result of this paper, Theorem 2.1, provides a lower bound for γ(X�Y�Z) which can be used to
re-obtain the mentioned result of Clark and Suen. To prove it, we use a modification of the new framework, to approach
Vizing’s conjecture, developed in [1].

2. Results

Let X and Y be graphs with γ(X) = k and γ(Y ) = r. Consider {u1, · · · , uk} to be a minimum dominating set of X and
{v1, · · · , vr} to be a minimum dominating set of Y. Let π = {πi,j ; 1 ≤ i ≤ k, 1 ≤ j ≤ r} be a partition of V (X�Y ) chosen so
that (ui, vj) ∈ πi,j and πi,j ⊆ N [ui] × N [vj ] for any 1 ≤ i ≤ k and 1 ≤ j ≤ r, where N [x] is the set containing x and all the
vertices adjacent to it. Let Z be a graph and define Zi,j := πi,j ×V (Z). For a vertex z ∈ V (Z), the set of vertices πi,j ×{z} is
called a cell, and is denoted πzi,j . We may say that the cell πzi,j belongs to Zi,j , and from the other perspective it also belongs
to the fiber (X�Y )z.

For a natural number k, the set {1, · · · , k} we be denote by [k]. Let D be a minimum dominating set of X�Y�Z. For
(i, j) ∈ [k] × [r], let Di,j = D ∩ Zi,j . Similarly, we denote Dz = D ∩ (X�Y )z for z ∈ V (Z). We color the cell πzi,j blue if
πzi,j ∩D 6= ∅ and πzi,j is dominated byDz. The cell πzi,j is colored green if πzi,j ∩D 6= ∅ and πzi,j is not dominated byDz. Finally,
we color the cell red if it is dominated by Dz and no vertex of πzi,j is dominated by Di,j . All the remaining cells in (X�Y )z

are colored white. Note that exactly the cells with color blue and green contain vertices of D. In the set V (X�Y�Z) we
only color the vertices of D as follows. The vertices in D ∩ πzi,j are colored blue (resp. green) if the cell πzi,j is blue (resp.
green). This coloring of the vertices of D is a partition of D into subsets of blue vertices and green vertices.
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Example 2.1. Consider the three graphs X,Y and Z with vertex sets
V (X) = {x1, x2, x3, x4, x5, x6, x7, x8}, V (Y ) = {y1, y2, y3, y4, y5}, V (Z) = {z1, z2, z3} respectively and edge sets defined as
follows

E(X) = {x1x2, x1x3, x2x3, x2x6, x3x4, x4x5, x5x6, x5x8, x6x7, x7x8},

E(Y ) = {y1y2, y1y4, y2y3, y2y5, y3y4, y4y5},

and
E(Z) = {z1z2, z2z3}.

It would be easy to check that the domination number of X is 3, of Y is 2 and that of Z is 1. Consider the dominating sets
{x2, x5, x7} and {y2, y4} of X and Y respectively. Let π = {π1,1, π1,2, π2,1, π2,2, π3,1, π3,2} be the partition of V (X�Y ) where:

π1,1 = {(x1, y1), (x2, y1), (x3, y1), (x1, y2), (x2, y2), (x3, y2)},

π1,2 = {(x1, y3), (x2, y3), (x3, y3), (x1, y4), (x2, y4), (x3, y4), (x1, y5), (x2, y5), (x3, y5)},

π2,1 = {(x4, y1), (x5, y1), (x4, y2), (x5, y2)},

π2,2 = {(x4, y3), (x5, y3), (x4, y4), (x5, y4), (x6, y4), (x4, y5), (x5, y5)},

π3,1 = {(x6, y1), (x7, y1), (x8, y1), (x6, y2), (x7, y2), (x8, y2), (x6, y3), (x7, y3), (x8, y3),

(x6, y5), (x7, y5), (x8, y5)},

π3,2 = {(x7, y4), (x8, y4)}.

We used SageMath [3] to verify that the domination number ofX�Y�Z is 19 and that a minimal dominating set is given
by

D = {(x1, y4, z1), (x2, y2, z1), (x4, y2, z1), (x5, y4, z1), (x6, y4, z1), (x8, y2, z1), (x3, y1, z2), (x3, y3, z2),

(x3, y5, z2), (x5, y2, z2), (x7, y1, z2), (x7, y3, z2), (x7, y5, z2), (x1, y2, z3), (x2, y4, z3),

(x4, y4, z3), (x5, y2, z3), (x6, y2, z3), (x8, y4, z3)}.

In Figure 2.1, we show the coloring of the cells in blue, green, red and white (cells with dashed edges) as well as the
coloring of the vertices of D in blue and green. The cells in the bottom correspond to the layer (X�Y )z1 , those in the middle
correspond to the layer (X�Y )z2 , while on the top figures the cells of the layer (X�Y )z3 . The reader is invited to check that
the colors given to cells agrees with our construction. For example, the cell πz12,1 is colored blue since it contains a vertex of D
and all its vertices are dominated by D ∩ (X�Y )z1 while πz11,1 is colored green since it contains a vertex of D but the vertex
(x3, y1, z1) ∈ πz11,1 and is not dominated by any vertex in D ∩ (X�Y )z1 . Also, πz13,2 is colored red because it contains no vertex
of D and all of its vertices are dominated by D ∩ (X�Y )z1 , but πz22,2 is colored white because it contains no vertex of D and
some of its vertices, (x4, y4, z2) for example, is not dominated by D ∩ (X�Y )z2 .

Now let b′z be the number of blue cells in the fiber (X�Y )z and b′ be the total number of blue cells inX�Y�Z.We define
analogously g′z and g′ associated with the green cells, r′z and r′ associated with red cells and w′

z and w′ associated with
the white cells. Also, let bz denote the number of blue vertices in (X�Y )z and let b be the total number of blue vertices in
X�Y�Z. In an analogous way define gz and g, associated with the green vertices. It would be clear that bz ≥ b′z, b ≥ b′,

gz ≥ g′z, g ≥ g′ and |D| = b+ g.

Lemma 2.1. b′ + g′ + r′ ≥ γ(X)γ(Y )γ(Z).

Proof. For any (i, j) ∈ [k] × [r], in the projection pZ of the cells of Zi,j to Z, let the vertex z = pZ(πzi,j) receive the color of
the cell πzi,j . Let Bi,j , Gi,j , Ri,j and Wi,j be the resulting set of vertices in Z colored blue, green, red and white respectively,
for each (i, j) ∈ [k]× [r]. Since in each white cell πzi,j , there should be a vertex covered vertically by a blue or a green vertex,
then it would be clear that the disjoint union Bi,j t Gi,j t Ri,j dominates Z. That is |Bi,j | + |Gi,j | + |Ri,j | ≥ γ(Z) for any
(i, j) ∈ [k]× [r]. Thus,

b′ + g′ + r′ =

k∑
i=1

r∑
j=1

(|Bi,j |+ |Gi,j |+ |Ri,j |) ≥
k∑
i=1

r∑
j=1

γ(Z) = γ(X)γ(Y )γ(Z).
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Figure 2.1: Cell coloring for the cartesian product X�Y�Z.
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Example 2.2. Following with Example 2.1, one can check that for any (i, j) ∈ [3] × [2], Bi,j t Gi,j t Ri,j dominates Z. For
example,B2,2tG2,2tR2,2 andB3,2tG3,2tR3,2 both dominateZ. In addition, b′+g′+r′ = 7+8+1 ≥ γ(X)γ(Y )γ(Z) = 3·2·1 = 6.

For each cell πi,j , we define lY (πi,j) to be |pY (πi,j)|, where pY is the projection map from V (X�Y ) to V (Y ). Similarly,
define lX(πi,j) to be |pX(πi,j)|. Now define l(πi,j) to be the minimum of lX(πi,j) and lY (πi,j),

l(πi,j) := min{lX(πi,j), lY (πi,j)}

and let LX,Y be the maximum of all l(πi,j),

LX,Y := max{l(πi,j); 1 ≤ i ≤ k, 1 ≤ j ≤ r}.

Example 2.3. In Example 2.1, we have l(π1,1) = 2, l(π1,2) = 3, l(π2,1) = 2, l(π2,2) = 3, l(π3,1) = 3 and l(π3,2) = 1. Therefore,
LX,Y = 3.

By definition, l(πi,j) ≤ min{degX(ui) + 1,degY (vj) + 1}, where degX(ui) is the degree of the vertex ui in X, and

LX,Y ≤ min{∆(X) + 1,∆(Y ) + 1},

where ∆(X) is the maximum vertex degree in X.

Lemma 2.2. LX,Y r′ ≤ b+ g − LX,Y b′ + |V (Z)| (LX,Y γ(X)γ(Y )− γ(X�Y )) .

Proof. For any z ∈ V (Z), in the fiber (X�Y )z, the blue and green vertices dominate all the vertices in the blue and red
cells. To dominate all the vertices in the green and white cells, it would be enough, for each green or white cell πzi,j , to
consider the vertices {(ui, t, z) : t ∈ pY (πi,j)} if l(πi,j)) = lY (πi,j) or the vertices {(t, vj , z) : t ∈ pX(πi,j)} if l(πi,j)) = lX(πi,j).

Therefore, for any z ∈ V (Z), we have

γ(X�Y ) = γ((X�Y )z) ≤ bz + gz +
∑

π∈GztWz

l(π),

where Gz and Wz denote respectively the set of green and white cells in (X�Y )z. Using the fact that l(π) ≤ LX,Y for any
π ∈ Gz tWz, we get:

γ(X�Y ) ≤ bz + gz + LX,Y (g′z + w′
z).

for any z ∈ V (Z). But for any z ∈ V (Z), the total number of cells in (X�Y )z is b′z + g′z +w′
z + r′z = γ(X)γ(Y ). Therefore, for

any z ∈ V (Z), we have
γ(X�Y ) ≤ bz + gz + LX,Y (γ(X)γ(Y )− b′z − r′z).

By summing over all the vertices z ∈ V (Z), we obtain:

|V (Z)|γ(X�Y ) ≤ b+ g + LX,Y (|V (Z)|γ(X)γ(Y )− b′ − r′).

The result follows.

Remark 2.1. From the proof of Lemma 2.2, one can improve the definition of LX,Y and take it to be

max{l(π);π ∈ Gz tWz for any z ∈ V (Z)}.

However, this will not affect the results which will follow.

Theorem 2.1. For every triple of graphs X, Y and Z, it holds that γ(X�Y�Z) ≥ αZX,Y , where

αZX,Y :=
LX,Y

LX,Y + 1
γ(X)γ(Y )γ(Z)− |V (Z)|

LX,Y + 1
(LX,Y γ(X)γ(Y )− γ(X�Y )) .

Proof. By Lemmas 2.1 and 2.2, we have

LX,Y γ(X)γ(Y )γ(Z) ≤ LX,Y b
′ + LX,Y g

′ + LX,Y r
′

≤ LX,Y g
′ + b+ g + |V (Z)| (LX,Y γ(X)γ(Y )− γ(X�Y )) .

Using the facts that b+ g = |D| = γ(X�Y�Z) and g′ ≤ g ≤ |D|, we get

LX,Y γ(X)γ(Y )γ(Z) ≤ (LX,Y + 1)γ(X�Y�Z) + |V (Z)| (LX,Y γ(X)γ(Y )− γ(X�Y )) .

The result follows.
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Using the fact that the Cartesian product of graphs is commutative and associative, we have the following result.

Corollary 2.1. For every triple of graphs X, Y and Z, the following inequality holds:

γ(X�Y�Z) ≥ max{αZX,Y , αYX,Z , αXY,Z}.

Remark 2.2. In the lower bound obtained in Theorem 2.1, LX,Y depends on the choice of the partition of V (X�Y ).However,
as it will next appear, for some graphs X with a few number of vertices, the value of LX,Y will be limited to 1 or 2.

Example 2.4. In this example, we fix X = P2, Y = P3 and Z = P4, where P2, P3 and P4 are the path graphs on two, three
and four vertices respectively. As stated in Remark 2.2, in general LX,Y depends on the choice of the partition of V (X�Y ).

But obviously, taking the (trivial) partition of V (P2�P3) which consists of putting all the vertices of V (P2�P3) in one cell
implies that LP2,P3

= 2. In addition, it can be easily seen that one may take partitions of V (P2�P4) and V (P3�P4) so that
LP2,P4

= 2 and LP3,P4
= 2. Since, γ(P2�P3) = 2, γ(P2�P4) = 3 and γ(P3�P4) = 4, by Theorem 2.1, we have:

αP4

P2,P3
=

2

2 + 1
1 · 1 · 2− 4

2 + 1
(2 · 1 · 1− 2) =

4

3
,

αP3

P2,P4
=

2

2 + 1
1 · 2 · 1− 3

2 + 1
(2 · 1 · 2− 3) =

1

3
,

αP2

P3,P4
=

2

2 + 1
1 · 2 · 1− 2

2 + 1
(2 · 1 · 2− 4) =

4

3
.

This implies by the Corollary 2.1 that γ(P2�P3�P4) ≥ 2.

Corollary 2.2 (Clark and Suen, [2]). For any two graphs Y and Z, the following inequality holds:

γ(Y�Z) ≥ 1

2
γ(Y )γ(Z).

Proof. Applying Theorem 2.1 for the trivial graph X, it would be clear that γ(X) = 1 and LX,Y = 1. As such,

γ(X�Y�Z) = γ(Y�Z) ≥ 1

2
γ(Y )γ(Z)− |V (Z)|

2
(γ(Y )− γ(Y )) =

1

2
γ(Y )γ(Z).

In [5], after a major change to the projection method developed in this paper, it is shown that for any pair of graphs
X and Y , the inequality γ(X�Y�P2) ≥ 2

3γ(X)γ(Y ) holds; and in general, it holds that γ(X�Y�Pn) ≥ cnγ(X)γ(Y )γ(Pn),
where cn is almost 3

4 when n is big enough.

References
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