Research Article

Multicolor Ramsey theory for a fan versus complete graphs

Mark Budden*, Hayden Privette
Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, North Carolina 28723, USA

(Received: 2 April 2024. Received in revised form: 1 July 2024. Accepted: 9 July 2024. Published online: 15 July 2024.)
© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let $m K_{2}$ be the disjoint union of m copies of K_{2} and define the fan $F_{m}:=K_{1}+m K_{2}$. The multicolor Ramsey number, $r\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the least natural number p such that any t-coloring of K_{p} contains a monochromatic G_{i} in some color i. The star-critical Ramsey number is denoted by $r_{*}\left(G_{1}, G_{2} \ldots, G_{t}\right)$. We consider the case of fans versus complete graphs. We show that $r\left(F_{m}, K_{3}, K_{3}\right)=10 m+1$ and $r_{*}\left(F_{m}, K_{3}, K_{3}\right) \geq 8 m+2$, for all $m \geq 6$. We also examine the corresponding Gallai-Ramsey numbers, proving that $g r\left(F_{2}, K_{3}, K_{3}\right)=21$ and $g r_{*}\left(F_{2}, K_{3}, K_{3}\right)=18$.

Keywords: Gallai-Ramsey number; critical colorings; star-critical Ramsey number.
2020 Mathematics Subject Classification: 05C55, 05D10, 05C15.

1. Introduction

Let K_{n} denote a complete graph of order n and let $m K_{n}$ be the disjoint union of m copies of K_{n}. The join of two graphs G_{1} and G_{2}, denoted $G_{1}+G_{2}$, is the graph formed by taking the disjoint union of G_{1} and G_{2} and adding in all edges that include a single vertex from G_{1} and a single vertex from G_{2}. The fan F_{m} is defined by $F_{m}:=K_{1}+m K_{2}$ and the vertex that corresponds with the K_{1}-subgraph is called the center vertex. We note that F_{m} has order $2 m+1$ and contains m blades (corresponding with the m disjoint K_{2}-subgraphs). Since $F_{1} \cong K_{3}$, any time we consider a fan F_{m}, it is assumed that $m \geq 2$.

A t-coloring of a graph G is a map $c: E(G) \longrightarrow\{1,2, \ldots, t\}$, where the numbers in $\{1,2, \ldots, t\}$ are identified with colors. We do not assume that such a map is surjective, so a t-coloring may use fewer than t colors. For graphs $G_{1}, G_{2}, \ldots, G_{t}$, the Ramsey number $r\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the least $p \in \mathbb{N}$ such that every t-coloring of K_{p} contains a monochromatic subgraph isomorphic to G_{i} in color i, for some $i \in\{1,2, \ldots, t\}$. When $r\left(G_{1}, G_{2}, \ldots, G_{t}\right)=p$, a t-coloring of K_{p-1} that avoids a monochromatic copy of G_{i} in color i, for all $i \in\{1,2, \ldots, t\}$, is called a critical coloring for $r\left(G_{1}, G_{2}, \ldots, G_{t}\right)$.

Ramsey numbers for fans (containing at least 2 blades) versus complete graphs have been considered in the following papers:

$$
\begin{aligned}
& r\left(F_{m}, K_{3}\right)=4 m+1, \quad \text { for all } m \geq 2 \\
& r\left(F_{m}, K_{4}\right)=6 m+1, \quad \text { for all } m \geq 4 \\
& r\left(F_{m}, K_{5}\right)=8 m+1, \quad \text { for all } m \geq 5 \\
& r\left(F_{m}, K_{6}\right)=10 m+1, \quad \text { for all } m \geq 6
\end{aligned}
$$

In [18], Surahmat, Baskoro, and Broersma gave the following conjecture.
Conjecture 1.1 (see [18]). For all $m \geq n \geq 3, r\left(F_{m}, K_{n}\right)=2 m(n-1)+1$.
Besides the above-known cases of this conjecture, a result by Li and Rousseau [15] implies that this conjecture is true for sufficiently large fans. In this paper, we consider the analogous problem for more than two colors and also consider the evaluation of the corresponding star-critical Ramsey numbers.

In order to describe a star-critical Ramsey number, define the notation $K_{n} \sqcup K_{1, k}$ to be the graph formed by taking the disjoint union of K_{n} and a single vertex, then adding in exactly k edges ($1 \leq k \leq n$) between the single vertex and the complete graph. The star-critical Ramsey number $r_{*}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is then defined to be the least k such that every t-coloring of $K_{r\left(G_{1}, G_{2}, \ldots, G_{t}\right)-1} \sqcup K_{1, k}$ contains a monochromatic G_{i} in color i, for some $i \in\{1,2, \ldots, t\}$. Star-critical Ramsey

[^0]numbers were first defined by Jonelle Hook in her dissertation [12]. The known star-critical Ramsey numbers for fans (containing at least 2 blades) versus complete graphs are
\[

$$
\begin{array}{ll}
r_{*}\left(F_{m}, K_{3}\right)=2 m+2, & \text { for all } m \geq 2 \\
r_{*}\left(F_{m}, K_{4}\right)=4 m+2, & \text { for all } m \geq 4
\end{array}
$$
\]

In Section 2, we focus on proving lower bound results for multicolor Ramsey and star-critical Ramsey numbers, and we consider their application to fans versus complete graphs. In particular, we show that

$$
r\left(F_{m}, K_{3}, K_{3}\right)=10 m+1 \quad \text { and } \quad r_{*}\left(F_{m}, K_{3}, K_{3}\right) \geq 8 m+2,
$$

for all $m \geq 6$. Unfortunately, these results do not immediately extend to the cases $2 \leq m \leq 5$. In order to make progress when $m=2$, in Section 3, we turn our attention to Gallai t-colorings.

A Gallai t-coloring of a graph G is a t-coloring of G that avoids rainbow triangles (K_{3}-subgraphs in which the three edges receive distinct colors). The Gallai-Ramsey number $\operatorname{gr}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the least $p \in \mathbb{N}$ such that every Gallai t-coloring of K_{p} contains a monochromatic copy of G_{i} in color i, for some $i \in\{1,2, \ldots, t\}$. A Gallai t-coloring of $K_{g r\left(G_{1}, G_{2}, \ldots, G_{t}\right)-1}$ that avoids a monochromatic copy of G_{i} in color i, for all $i \in\{1,2, \ldots, t\}$, is called a critical coloring for gr $\left(G_{1}, G_{2}, \ldots, G_{t}\right)$. Since every Gallai t-coloring is a t-coloring, it follows that

$$
\operatorname{gr}\left(G_{1}, G_{2}, \ldots, G_{t}\right) \leq r\left(G_{1}, G_{2}, \ldots, G_{t}\right)
$$

The star-critical Gallai-Ramsey number $g r_{*}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the least k such that every Gallai t-coloring of

$$
K_{g r\left(G_{1}, G_{2}, \ldots, G_{t}\right)-1} \sqcup K_{1, k}
$$

contains a monochromatic copy of G_{i} in color i, for some $i \in\{1,2, \ldots, t\}$. Besides the general inequality

$$
g r(F_{m}, \underbrace{K_{3}, \ldots, K_{3}}_{t \text { terms }}) \geq \begin{cases}2 m \cdot 5^{t / 2}+1 & \text { if } t \text { is even } \\ 4 m \cdot 5^{(t-1) / 2}+1 & \text { if } t \text { is odd },\end{cases}
$$

for all $m \geq 2$, we prove that

$$
\operatorname{gr}\left(F_{2}, K_{3}, K_{3}\right)=21 \quad \text { and } \quad g r_{*}\left(F_{2}, K_{3}, K_{3}\right)=18 .
$$

In Section 4, we conclude by providing some additional conjectures that we hope will guide future research.

2. Lower bounds in Ramsey theory

For a graph $G=(V, E)$, denote by $c(G)$ the order of its largest connected component and let $\chi(G)$ be its chromatic number. So, $c(G)=|V(G)|$ whenever G is connected. In 1972, Chvátal and Harary [7] proved that

$$
r\left(G_{1}, G_{2}\right) \geq\left(c\left(G_{1}\right)-1\right)\left(\chi\left(G_{2}\right)-1\right)+1
$$

for any graphs G_{1} and G_{2} that lack isolated vertices. When equality holds and $G_{2}=K_{n}$, we say that G_{1} is n-good. This concept was introduced in 1983 by Burr and Erdős [5] in the case where G_{2} is a complete graph, and has seen many generalizations (e.g., see [2], [3], and [4]). The following lemma offers an additional generalization.

Lemma 2.1. Let $t \geq 3$ and assume that $n_{i} \geq 2$, for all $i \in\{2, \ldots, t\}$. Then for any graph G,

$$
r\left(G, K_{n_{2}}, \ldots, K_{n_{t}}\right) \geq(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)+1
$$

Proof. Begin with a critical coloring for $r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)$, which is a $(t-1)$-coloring of $K_{r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1}$, using colors $2, \ldots, t$, that avoids a monochromatic copy of $K_{n_{i}}$ in color i, for all $i \in\{2, \ldots, t\}$. Replace each of the vertices in this critical coloring with a copy of $K_{c(G)-1}$ in color 1 . The resulting t-coloring of

$$
K_{(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)}
$$

avoids monochromatic copies of $K_{n_{i}}$ in color i, for all $i \in\{2, \ldots, t\}$, since such a complete graph would use at most a single vertex from each of the $K_{c(G)-1}$-subgraphs in color 1. It also avoids a copy of G in color 1 since the largest connected component in color 1 has order $c(G)-1$. The desired inequality then follows.

When equality holds for the inequality given in Lemma 2.1, we say that G is $\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)$-good. In the following theorem, we show that F_{m} is $\left(K_{3}, K_{3}\right)$-good when $m \geq 6$.

Theorem 2.1. For all $m \geq 6, r\left(F_{m}, K_{3}, K_{3}\right)=10 m+1$.
Proof. The lower bound $r\left(F_{m}, K_{3}, K_{3}\right) \geq 10 m+1$ follows from Lemma 2.1 and holds for all $m \geq 2$. To prove the reverse inequality, consider a 3-coloring of $K_{10 m+1}$, where $m \geq 6$, using the colors red, blue, and green. If we group the colors blue and green together, then the evaluation $r\left(F_{m}, K_{6}\right)=10 m+1$ proved in [13] implies that there exists a red F_{m} or a blue and green K_{6}. In the latter case, $r\left(K_{3}, K_{3}\right)=6$ [8] implies that there is a blue K_{3} or a green K_{3}.

For any graph G, let $\delta(G)$ denote the minimum degree of G :

$$
\delta(G):=\min \{\operatorname{deg}(x) \mid x \in V(G)\} .
$$

The following lemma then gives a new lower bound for certain star-critical Ramsey numbers.
Lemma 2.2. Let $t \geq 3$ and assume that G is $\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)$-good. Then

$$
r_{*}\left(G, K_{n_{2}}, \ldots, K_{n_{t}}\right) \geq(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-2\right)+\delta(G) .
$$

Proof. Since G is $\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)$-good, it follows that

$$
r\left(G, K_{n_{2}}, \ldots, K_{n_{t}}\right)=(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)+1
$$

Start with a $(t-1)$-coloring of

$$
K_{r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1} \sqcup K_{1, r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-2}=K_{r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)}-e
$$

that avoids a monochromatic copy of $K_{n_{i}}$ in color i, for all $i \in\{2, \ldots, t\}$. Such a coloring exists by Theorem 1.1 of [1]. Let $e=u v$ be the missing edge. Now replace each vertex, except for v, with copies of $K_{c(G)-1}$ in color 1 , coloring all edges joining distinct blocks with the color of the edge that originally joined the vertices that were replaced. Edges that join v to other $K_{c(G)-1}$-blocks receive the same color as the edge that originally joined v to the vertex that was replaced.

Let x be a vertex in the copy of $K_{c(G)-1}$ that replaced vertex u. For every vertex y other than v or x, color edge $v y$ the same color as edge $v x$. The resulting

$$
K_{(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)} \sqcup K_{1,(g(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-2\right)}
$$

still avoids a copy of $K_{n_{i}}$ in color i, for all $i \in\{2, \ldots, t\}$, and it avoids a copy of G in color 1 . By joining $\delta(G)-1$ edges in color 1 from v to the $K_{c(G)-1}$ that replaced u, we avoid a monochromatic copy of G in color 1 since vertex v cannot be included in such a copy of G. It follows that

$$
r_{*}\left(G, K_{n_{2}}, \ldots, K_{n_{t}}\right)>(c(G)-1)\left(r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-2\right)+\delta(G)-1,
$$

completing the proof.
By Theorem 2.1, F_{m} is $\left(K_{3}, K_{3}\right)$-good when $m \geq 6$, so Lemma 2.2 implies the following theorem.
Theorem 2.2. For all $m \geq 6, r_{*}\left(F_{m}, K_{3}, K_{3}\right) \geq 8 m+2$.
Unfortunately, the proof given for the upper bound in Theorem 2.1 does not hold for values of m such that $2 \leq m \leq 5$. In order to make some additional progress, we now transition to Gallai-Ramsey theory.

3. Gallai-Ramsey theory for a fan versus complete graphs

We start by noting that the construction given in the proof of Lemma 2.1 holds for Gallai t-colorings. So, the statement

$$
\begin{equation*}
\operatorname{gr}\left(G, K_{n_{2}}, \ldots, K_{n_{t}}\right) \geq(c(G)-1)\left(g r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)+1 \tag{1}
\end{equation*}
$$

is also true. When equality holds for the inequality given in (1), we say that G is Gallai $\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)$-good. In 1983, Chung and Graham [6] proved that for all $t \geq 2$,

$$
\operatorname{gr}(\underbrace{K_{3}, \ldots, K_{3}}_{t \text { terms }})= \begin{cases}5^{t / 2}+1 & \text { if } t \text { is even } \\ 2 \cdot 5^{(t-1) / 2}+1 & \text { if } t \text { is odd }\end{cases}
$$

Combining this result with (1), it follows that

$$
\operatorname{gr}(F_{m}, \underbrace{K_{3}, \ldots, K_{3}}_{t \text { terms }}) \geq \begin{cases}2 m \cdot 5^{t / 2}+1 & \text { if } t \text { is even } \tag{2}\\ 4 m \cdot 5^{(t-1) / 2}+1 & \text { if } t \text { is odd }\end{cases}
$$

for all $m, t \geq 2$.
Now we focus on the case of F_{2} versus two copies of K_{3}, first giving a useful property of what will turn out to be the critical colorings for $\operatorname{gr}\left(F_{2}, K_{3}, K_{3}\right)$. We require the following result of Liu, Magnant, Saito, Schiermeyer, and Shi [16] (see also Theorem 3.20 of [17]):

$$
\begin{equation*}
\operatorname{gr}\left(K_{4}, K_{3}, K_{3}\right)=17 \tag{3}
\end{equation*}
$$

Lemma 3.1. Every Gallai 3-coloring of K_{20} that avoids a red F_{2}, a blue K_{3}, and a green K_{3} contains a red $5 K_{4}$.
Proof. Consider a Gallai 3-coloring of K_{20} (using red, blue, and green) that avoids a red F_{2}, a blue K_{3}, and a green K_{3}. Denote its vertex set by V. By Equation (3), there must exist a red K_{4}, and we denote its vertex set by V_{1} and select a vertex $x_{1} \in V_{1}$. Now consider the Gallai 3-coloring of K_{19} induced by the vertex set $V-\left\{x_{1}\right\}$. Applying (3) again, there exists a red K_{4}, whose vertex set we denote by V_{2}. Note that that $\left|V_{1} \cap V_{2}\right| \in\{0,1,2,3\}$. However, if any of the cases $\left|V_{1} \cap V_{2}\right| \in\{1,2,3\}$ hold, then a red F_{2} is formed (see Figure 3.1). So, $V_{1} \cap V_{2}=\emptyset$. Select a vertex $x_{2} \in V_{2}$. Repeating this process, the K_{18}

Figure 3.1: Three cases where two red K_{4}-subgraphs share 1, 2, and 3 vertices, respectively. In all three cases, a red F_{2} is a subgraph, as is highlighted in the second row.
induced by the vertex set $V-\left\{x_{1}, x_{2}\right\}$ contains a red K_{4}, whose vertex set V_{3} must be disjoint from $V_{1} \cup V_{2}$ by the previous argument. Pick a vertex $x_{3} \in V_{3}$. Consider the K_{17} induced by $V-\left\{x_{1}, x_{2}, x_{3}\right\}$, which again contains a red K_{4} that is necessarily disjoint from $V_{1} \cup V_{2} \cup V_{3}$. Denote its vertex set by V_{4}. The vertex sets $V_{1}, V_{2}, V_{3}, V_{4}$ are pairwise disjoint and each induces a red K_{4}. So, our coloring contains a red $4 K_{4}$.

Observe that the edges joining a pair of vertex sets V_{i} and $V_{j}(i \neq j)$, cannot include both of the colors blue and green. To see this, suppose that $V_{i}=\{a, b, c, d\}$ and $V_{j}=\{w, x, y, z\}$. Without loss of generality, suppose that $a w$ is blue. Then, since a red F_{2} is avoided, a joins to at most one of $\{x, y, z\}$ with a red edge. If a rainbow K_{3} is to be avoided, then a must join to at least two of the elements in $\{x, y, z\}$ via blue edges. Assume that $a x$ and $a y$ are blue. If any green edge joins the two red K_{4}-subgraphs, then it must be incident with z, and it cannot be $a z$. Without loss of generality, suppose that $b z$ is green (see the first image in Figure 3.2). Avoiding a rainbow K_{3}, edges $b x$ and $b y$ must be red (see the second image in Figure 3.2), but then $\{b\} \cup V_{j}$ contains a red F_{2}. It follows that besides a potential matching of red edges joining V_{i} and V_{j}, all other edges must be the same color (either blue or green, but not both). We refer to such a color as the dominant color joining V_{i} and V_{j} and note that the dominant color appears on at least 12 edges joining V_{i} and V_{j}.

Let V_{5} consist of the four vertices not contained in $V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$. If $u \in V_{5}$, then u can join to each V_{i}, where $i \in\{1,2,3,4\}$ using at most a single red edge and with blue or green edges, but not both. Once again, we can talk about the dominant color of the edges joining u to V_{i} and note that the dominant color appears on at least 3 of the edges joining u and V_{i}. We conclude the proof by considering two cases.

Figure 3.2: Joining edges in two disjoint red K_{4}-subgraphs in a Gallai 3-coloring of K_{20}.

Case 1. Suppose that some $u \in V_{5}$ joins to at least three of V_{1}, V_{2}, V_{3}, and V_{4} using the same dominant color. Without loss of generality suppose that blue is the dominant color joining u to V_{1}, V_{2}, and V_{3}. If the dominant color joining V_{1} and V_{2} is blue, then a blue K_{3} can be formed by including u and a single vertex from each of V_{1} and V_{2}. For example, if $u a$, $u b$, and $u c$ are blue with $a \in V_{1}$ and $b, c \in V_{2}$ (b and c are assumed to be distinct), then at most one of $a b$ and $a c$ is red and the other is blue, forming a blue K_{3} with u. A similar argument follows if the dominant color is blue for the edges joining V_{2} and V_{3} or the edges joining V_{1} and V_{3}. So, the dominant color for edges joining all three of the vertex sets V_{1}, V_{2}, and V_{3} is green, and a green K_{3} can be formed. As we obtain a blue K_{3} or a green K_{3}, this case cannot occur.

Case 2. Suppose that each vertex in V_{5} joins to exactly two of V_{1}, V_{2}, V_{3}, and V_{4} with a dominant color blue and two with a dominant color green. Assume that some edge in V_{5} (say, $u v$) is blue. Without loss of generality, suppose that blue is the dominant color joining u to V_{1} and V_{2} and green is the dominant color joining u to V_{3} and V_{4}. If v joins with dominant color blue to either V_{1} or V_{2}, then a blue K_{3} can be formed. So, v must join with dominant color blue to V_{3} and V_{4} and with dominant color green to V_{1} and V_{2}. Regardless of which dominant color (blue or green) appears joining V_{1} to V_{2}, that color forms a blue or green K_{3} with either u or v. This entire argument can be repeated if $u v$ is green. Thus, it follows that $u v$ must be red. Since u and v were arbitrary vertices in V_{5}, it follows that V_{5} is a red K_{4}, and hence, our coloring of K_{20} contains a red $5 K_{4}$.

Theorem 3.1. In the case of F_{2} versus two copies of K_{3}, we have

$$
\operatorname{gr}\left(F_{2}, K_{3}, K_{3}\right)=21 \quad \text { and } \quad g r_{*}\left(F_{2}, K_{3}, K_{3}\right)=18 .
$$

Proof. The lower bound $\operatorname{gr}\left(F_{2}, K_{3}, K_{3}\right) \geq 21$ follows from (2). We now prove that

$$
g r\left(F_{2}, K_{3}, K_{3}\right) \leq 21 \quad \text { and } \quad g r_{*}\left(F_{2}, K_{3}, K_{3}\right) \leq 18
$$

by showing that every Gallai 3-coloring of $K_{20} \sqcup K_{1,18}$ contains a red F_{2}, a blue K_{3}, or a green K_{3}. Consider such a coloring and let v be the vertex with degree 18. If the K_{20} avoids a red F_{2}, and blue K_{3}, and a green K_{3}, then by Lemma 3.1, it must contain a red $5 K_{4}$, whose vertex sets we label $V_{1}, V_{2}, V_{3}, V_{4}$, and V_{5}. As was noted in the proof of Lemma 3.1, between each distinct pair of vertex sets V_{i} and V_{j}, there is a dominant color (either blue or green) that appears on all edges, except possibly a red matching. In order for a blue K_{3} and a green K_{3} to be avoided, the dominant colors for the edges spanning $V_{1}, V_{2}, V_{3}, V_{4}$, and V_{5} must form a blue C_{5} and a green C_{5} (see Figure 3.3) as this coloring corresponds with the only critical coloring for $r\left(K_{3}, K_{3}\right)$.

Note that v must join to each V_{i} using at most one red edge and with all other edges either blue or green (but not both). So, as before, we can talk about a dominant color (blue or green) joining v to each V_{i}. Since 18 edges join v to the K_{20}, each V_{i} joins to v with at least two edges, one of which must be a color other than red. By the Pigeonhole Principle, v must join to at least three of $V_{1}, V_{2}, V_{3}, V_{4}$, and V_{5} with the same dominant color. Without loss of generality, suppose that v has dominant color blue joining to V_{1}, V_{2}, and V_{3}. Then if any pair of these vertex sets join with dominant color blue, a blue K_{3} can be formed. Otherwise, all three of them must join with dominant color green, and a green K_{3} can be formed. It follows that

$$
\operatorname{gr}\left(F_{2}, K_{3}, K_{3}\right) \leq 21 \quad \text { and } \quad g r_{*}\left(F_{2}, K_{3}, K_{3}\right) \leq 18
$$

To complete the proof of the theorem, it remains to be shown that

$$
g r_{*}\left(F_{2}, K_{3}, K_{3}\right) \geq 18 .
$$

Figure 3.3: A Gallai 3-coloring of K_{20} that avoids a red F_{2}, a blue K_{3}, and a green K_{3}.

Figure 3.4: A Gallai 3-coloring of $K_{20} \sqcup K_{1,17}$ that avoids a red F_{2}, a blue K_{3}, and a green K_{3}.

Consider a critical coloring for $r\left(K_{3}, K_{3}\right)$ in blue and green (the base graph) and replace each of its vertices with red K_{4}-subgraphs (again, see Figure 3.3). Label the K_{4} vertex sets $V_{1}, V_{2}, V_{3}, V_{4}$, and V_{5} and suppose that $V_{1} V_{2} V_{3} V_{4} V_{5} V_{1}$ corresponds with a blue C_{5} in the base graph. Introduce vertex v, joining it to V_{1} and V_{4} with blue edges, to V_{2} and V_{3} with green edges, and to a single vertex in V_{5} with a red edge (see Figure 3.4). The resulting $K_{20} \sqcup K_{1,17}$ avoids a blue K_{3} and a green K_{3}. Vertex v cannot be included in a red F_{2} since it has red degree 1 and no red connected component in the K_{20} is large enough to contain a red F_{2}. Thus, $g r_{*}\left(F_{2}, K_{3}, K_{3}\right) \geq 18$, completing the proof of the theorem.

4. Conclusion

We now conclude by stating some conjectures and directions for future research motivated by our work. The following conjecture generalizes Conjecture 1.1.

Conjecture 4.1. For all $t \geq 3$ and $m \geq g r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right) \geq 3$,

$$
\operatorname{gr}\left(F_{m}, K_{n_{2}}, \ldots, K_{n_{t}}\right)=2 m\left(\operatorname{gr}\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)+1
$$

Whenever Conjecture 1.1 is true, we obtain the following conjecture concerning the corresponding star-critical Ramsey numbers.

Conjecture 4.2. If $r\left(F_{m}, K_{n}\right)=2 m(n-1)+1$ for some fixed $m \geq n \geq 3$, then

$$
r_{*}\left(F_{m}, K_{n}\right)=2 m(n-2)+2 .
$$

Of course, this conjecture can be further generalized to the multicolor case.

Conjecture 4.3. If $\operatorname{gr}\left(F_{m}, K_{n_{2}}, \ldots, K_{n_{t}}\right)=2 m\left(g r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-1\right)+1$ for some $t \geq 3$ and $m \geq g r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right) \geq 3$, then

$$
g r_{*}\left(F_{m}, K_{n_{2}}, \ldots, K_{n_{t}}\right)=2 m\left(g r\left(K_{n_{2}}, \ldots, K_{n_{t}}\right)-2\right)+2 .
$$

Other related variations of Ramsey numbers that have been considered include $r\left(K_{1}+m K_{3}, K_{n}\right)$ [11], $r\left(K_{1}+m K_{t}, K_{n}\right)$ [19], and $r\left(K_{1}+m H, k K_{n}\right)$ [10], along with the corresponding star-critical Ramsey numbers. At present, no multicolor analogues for these numbers have been studied.

References

[1] M. Budden, Star-Critical Ramsey Numbers for Graphs, Springer, Cham, 2023.
[2] M. Budden, E. DeJonge, Multicolor star-critical Ramsey numbers and Ramsey-good graphs, Electron. J. Graph Theory Appl. 10 (2022) 51-66.
[3] M. Budden, J. Hiller, A. Penland, Constructive methods in Gallai-Ramsey theory for hypergraphs, Integers 20A (2020) \#A4.
[4] S. Burr, Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc. 24(2) (1981) 405-413.
[5] S. Burr, P. Erdős, Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983) 39-51.
[6] F. Chung, R. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983) 315-324.
[7] V. Chvátal, F. Harary, Generalized Ramsey theory for graphs III, small off-diagonal numbers, Pacific J. Math. 41 (1972) 335-345.
[8] R. Greenwood, A. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
[9] S. Haghi, H. Maimani, A. Seify, Star-critical Ramsey number of F_{n} versus K_{4}, Discrete Appl. Math. 217 (2017) 203-209.
[10] A. Hamm, P. Hazelton, S. Thompson, On Ramsey and star-critical Ramsey numbers for generalized fans versus $n K_{m}$, Discrete Appl. Math. 305 (2021) 64-70.
[11] Y. Hao, Q. Lin, Ramsey number of K_{3} versus $F_{3, n}$, Discrete Appl. Math. 251 (2018) 345-348.
[12] J. Hook, The Classification of Critical Graphs and Star-Critical Ramsey Numbers, Ph.D. Thesis, Lehigh University, 2010.
[13] S.-Y. Kadota, T. Onozuka, Y. Suzuki, The graph Ramsey number $R\left(F_{\ell}, K_{6}\right)$, Discrete Math. 342 (2019) 1028-1037.
[14] Z. Li, Y. Li, Some star-critical Ramsey numbers, Discrete Appl. Math. 181 (2015) 301-305.
[15] Y. Li, C. Rousseau, Fan-complete graphs Ramsey numbers, J. Graph Theory 23(4) (1996) 413-420.
[16] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, Y. Shi, Gallai-Ramsey number for K_{4}, J. Graph Theory 94 (2020) 192-205.
[17] C. Magnant, P. Salehi Nowbandegani, Topics in Gallai-Ramsey Theory, Springer, Cham, 2020.
[18] Surahmat, E. Baskoro, H. Broersma, The Ramsey numbers of fans versus K ${ }_{4}$, Bull. Inst. Combin. Appl. 43 (2005) 96-102.
[19] M. Wang, J. Qian, Ramsey numbers for complete graphs versus generalized fans, Graphs Combin. 38 (2022) \#186.
[20] Y. Zhang, Y. Chen, The Ramsey number of fans versus a complete graph of order five, Electron. J. Graph Theory Appl. 2(1) (2014) 66-69.

[^0]: *Corresponding author (mrbudden@email.wcu.edu).

