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Abstract

Let mK2 be the disjoint union of m copies of K2 and define the fan Fm := K1 + mK2. The multicolor Ramsey number,
r(G1, G2, . . . , Gt) is the least natural number p such that any t-coloring of Kp contains a monochromatic Gi in some color
i. The star-critical Ramsey number is denoted by r∗(G1, G2. . . . , Gt). We consider the case of fans versus complete graphs.
We show that r(Fm,K3,K3) = 10m + 1 and r∗(Fm,K3,K3) ≥ 8m + 2, for all m ≥ 6. We also examine the corresponding
Gallai-Ramsey numbers, proving that gr(F2,K3,K3) = 21 and gr∗(F2,K3,K3) = 18.
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1. Introduction

Let Kn denote a complete graph of order n and let mKn be the disjoint union of m copies of Kn. The join of two graphs
G1 and G2, denoted G1 + G2, is the graph formed by taking the disjoint union of G1 and G2 and adding in all edges that
include a single vertex from G1 and a single vertex from G2. The fan Fm is defined by Fm := K1+mK2 and the vertex that
corresponds with the K1-subgraph is called the center vertex. We note that Fm has order 2m + 1 and contains m blades
(corresponding with them disjointK2-subgraphs). Since F1

∼= K3, any time we consider a fan Fm, it is assumed thatm ≥ 2.
A t-coloring of a graph G is a map c : E(G) −→ {1, 2, . . . , t}, where the numbers in {1, 2, . . . , t} are identified with colors.

We do not assume that such a map is surjective, so a t-coloring may use fewer than t colors. For graphs G1, G2, . . . , Gt, the
Ramsey number r(G1, G2, . . . , Gt) is the least p ∈ N such that every t-coloring of Kp contains a monochromatic subgraph
isomorphic to Gi in color i, for some i ∈ {1, 2, . . . , t}. When r(G1, G2, . . . , Gt) = p, a t-coloring of Kp−1 that avoids a
monochromatic copy of Gi in color i, for all i ∈ {1, 2, . . . , t}, is called a critical coloring for r(G1, G2, . . . , Gt).

Ramsey numbers for fans (containing at least 2 blades) versus complete graphs have been considered in the following
papers:

r(Fm,K3) = 4m+ 1, for all m ≥ 2 [15],
r(Fm,K4) = 6m+ 1, for all m ≥ 4 [18],
r(Fm,K5) = 8m+ 1, for all m ≥ 5 [20],
r(Fm,K6) = 10m+ 1, for all m ≥ 6 [13].

In [18], Surahmat, Baskoro, and Broersma gave the following conjecture.

Conjecture 1.1 (see [18]). For all m ≥ n ≥ 3, r(Fm,Kn) = 2m(n− 1) + 1.

Besides the above-known cases of this conjecture, a result by Li and Rousseau [15] implies that this conjecture is true for
sufficiently large fans. In this paper, we consider the analogous problem for more than two colors and also consider the
evaluation of the corresponding star-critical Ramsey numbers.

In order to describe a star-critical Ramsey number, define the notation Kn t K1,k to be the graph formed by taking
the disjoint union of Kn and a single vertex, then adding in exactly k edges (1 ≤ k ≤ n) between the single vertex and
the complete graph. The star-critical Ramsey number r∗(G1, G2, . . . , Gt) is then defined to be the least k such that every
t-coloring of Kr(G1,G2,...,Gt)−1 tK1,k contains a monochromatic Gi in color i, for some i ∈ {1, 2, . . . , t}. Star-critical Ramsey
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numbers were first defined by Jonelle Hook in her dissertation [12]. The known star-critical Ramsey numbers for fans
(containing at least 2 blades) versus complete graphs are

r∗(Fm,K3) = 2m+ 2, for all m ≥ 2 [14],
r∗(Fm,K4) = 4m+ 2, for all m ≥ 4 [9].

In Section 2, we focus on proving lower bound results for multicolor Ramsey and star-critical Ramsey numbers, and we
consider their application to fans versus complete graphs. In particular, we show that

r(Fm,K3,K3) = 10m+ 1 and r∗(Fm,K3,K3) ≥ 8m+ 2,

for all m ≥ 6. Unfortunately, these results do not immediately extend to the cases 2 ≤ m ≤ 5. In order to make progress
when m = 2, in Section 3, we turn our attention to Gallai t-colorings.

AGallai t-coloring of a graphG is a t-coloring ofG that avoids rainbow triangles (K3-subgraphs in which the three edges
receive distinct colors). The Gallai-Ramsey number gr(G1, G2, . . . , Gt) is the least p ∈ N such that every Gallai t-coloring
of Kp contains a monochromatic copy of Gi in color i, for some i ∈ {1, 2, . . . , t}. A Gallai t-coloring of Kgr(G1,G2,...,Gt)−1 that
avoids a monochromatic copy of Gi in color i, for all i ∈ {1, 2, . . . , t}, is called a critical coloring for gr(G1, G2, . . . , Gt). Since
every Gallai t-coloring is a t-coloring, it follows that

gr(G1, G2, . . . , Gt) ≤ r(G1, G2, . . . , Gt).

The star-critical Gallai-Ramsey number gr∗(G1, G2, . . . , Gt) is the least k such that every Gallai t-coloring of

Kgr(G1,G2,...,Gt)−1 tK1,k

contains a monochromatic copy of Gi in color i, for some i ∈ {1, 2, . . . , t}. Besides the general inequality

gr(Fm,K3, . . . ,K3︸ ︷︷ ︸
t terms

) ≥

{
2m · 5t/2 + 1 if t is even
4m · 5(t−1)/2 + 1 if t is odd,

for all m ≥ 2, we prove that
gr(F2,K3,K3) = 21 and gr∗(F2,K3,K3) = 18.

In Section 4, we conclude by providing some additional conjectures that we hope will guide future research.

2. Lower bounds in Ramsey theory

For a graph G = (V,E), denote by c(G) the order of its largest connected component and let χ(G) be its chromatic number.
So, c(G) = |V (G)| whenever G is connected. In 1972, Chvátal and Harary [7] proved that

r(G1, G2) ≥ (c(G1)− 1)(χ(G2)− 1) + 1,

for any graphs G1 and G2 that lack isolated vertices. When equality holds and G2 = Kn, we say that G1 is n-good. This
concept was introduced in 1983 by Burr and Erdős [5] in the case where G2 is a complete graph, and has seen many
generalizations (e.g., see [2], [3], and [4]). The following lemma offers an additional generalization.

Lemma 2.1. Let t ≥ 3 and assume that ni ≥ 2, for all i ∈ {2, . . . , t}. Then for any graph G,

r(G,Kn2 , . . . ,Knt) ≥ (c(G)− 1)(r(Kn2 , . . . ,Knt)− 1) + 1.

Proof. Begin with a critical coloring for r(Kn2
, . . . ,Knt

), which is a (t− 1)-coloring ofKr(Kn2
,...,Knt )−1, using colors 2, . . . , t,

that avoids a monochromatic copy ofKni in color i, for all i ∈ {2, . . . , t}. Replace each of the vertices in this critical coloring
with a copy of Kc(G)−1 in color 1. The resulting t-coloring of

K(c(G)−1)(r(Kn2 ,...,Knt )−1)

avoids monochromatic copies of Kni
in color i, for all i ∈ {2, . . . , t}, since such a complete graph would use at most a single

vertex from each of the Kc(G)−1-subgraphs in color 1. It also avoids a copy of G in color 1 since the largest connected
component in color 1 has order c(G)− 1. The desired inequality then follows.
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When equality holds for the inequality given in Lemma 2.1, we say that G is (Kn2 , . . . ,Knt)-good. In the following
theorem, we show that Fm is (K3,K3)-good when m ≥ 6.

Theorem 2.1. For all m ≥ 6, r(Fm,K3,K3) = 10m+ 1.

Proof. The lower bound r(Fm,K3,K3) ≥ 10m + 1 follows from Lemma 2.1 and holds for all m ≥ 2. To prove the reverse
inequality, consider a 3-coloring of K10m+1, where m ≥ 6, using the colors red, blue, and green. If we group the colors blue
and green together, then the evaluation r(Fm,K6) = 10m + 1 proved in [13] implies that there exists a red Fm or a blue
and green K6. In the latter case, r(K3,K3) = 6 [8] implies that there is a blue K3 or a green K3.

For any graph G, let δ(G) denote the minimum degree of G:

δ(G) := min{deg(x) | x ∈ V (G)}.

The following lemma then gives a new lower bound for certain star-critical Ramsey numbers.

Lemma 2.2. Let t ≥ 3 and assume that G is (Kn2
, . . . ,Knt

)-good. Then

r∗(G,Kn2
, . . . ,Knt

) ≥ (c(G)− 1)(r(Kn2
, . . . ,Knt

)− 2) + δ(G).

Proof. Since G is (Kn2 , . . . ,Knt)-good, it follows that

r(G,Kn2 , . . . ,Knt) = (c(G)− 1)(r(Kn2 , . . . ,Knt)− 1) + 1.

Start with a (t− 1)-coloring of

Kr(Kn2
,...,Knt )−1 tK1,r(Kn2

,...,Knt )−2 = Kr(Kn2
,...,Knt )

− e

that avoids a monochromatic copy of Kni
in color i, for all i ∈ {2, . . . , t}. Such a coloring exists by Theorem 1.1 of [1]. Let

e = uv be the missing edge. Now replace each vertex, except for v, with copies of Kc(G)−1 in color 1, coloring all edges
joining distinct blocks with the color of the edge that originally joined the vertices that were replaced. Edges that join v to
other Kc(G)−1-blocks receive the same color as the edge that originally joined v to the vertex that was replaced.

Let x be a vertex in the copy of Kc(G)−1 that replaced vertex u. For every vertex y other than v or x, color edge vy the
same color as edge vx. The resulting

K(c(G)−1)(r(Kn2
,...,Knt )−1) tK1,(g(G)−1)(r(Kn2

,...,Knt )−2)

still avoids a copy ofKni
in color i, for all i ∈ {2, . . . , t}, and it avoids a copy of G in color 1. By joining δ(G)−1 edges in color

1 from v to the Kc(G)−1 that replaced u, we avoid a monochromatic copy of G in color 1 since vertex v cannot be included in
such a copy of G. It follows that

r∗(G,Kn2 , . . . ,Knt) > (c(G)− 1)(r(Kn2 , . . . ,Knt)− 2) + δ(G)− 1,

completing the proof.

By Theorem 2.1, Fm is (K3,K3)-good when m ≥ 6, so Lemma 2.2 implies the following theorem.

Theorem 2.2. For all m ≥ 6, r∗(Fm,K3,K3) ≥ 8m+ 2.

Unfortunately, the proof given for the upper bound in Theorem 2.1 does not hold for values of m such that 2 ≤ m ≤ 5. In
order to make some additional progress, we now transition to Gallai-Ramsey theory.

3. Gallai-Ramsey theory for a fan versus complete graphs

We start by noting that the construction given in the proof of Lemma 2.1 holds for Gallai t-colorings. So, the statement

gr(G,Kn2 , . . . ,Knt) ≥ (c(G)− 1)(gr(Kn2 , . . . ,Knt)− 1) + 1 (1)

is also true. When equality holds for the inequality given in (1), we say that G is Gallai (Kn2 , . . . ,Knt)-good. In 1983,
Chung and Graham [6] proved that for all t ≥ 2,

gr(K3, . . . ,K3︸ ︷︷ ︸
t terms

) =

{
5t/2 + 1 if t is even
2 · 5(t−1)/2 + 1 if t is odd.
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Combining this result with (1), it follows that

gr(Fm,K3, . . . ,K3︸ ︷︷ ︸
t terms

) ≥

{
2m · 5t/2 + 1 if t is even
4m · 5(t−1)/2 + 1 if t is odd,

(2)

for all m, t ≥ 2.
Now we focus on the case of F2 versus two copies of K3, first giving a useful property of what will turn out to be the

critical colorings for gr(F2,K3,K3). We require the following result of Liu, Magnant, Saito, Schiermeyer, and Shi [16] (see
also Theorem 3.20 of [17]):

gr(K4,K3,K3) = 17. (3)

Lemma 3.1. Every Gallai 3-coloring of K20 that avoids a red F2, a blue K3, and a green K3 contains a red 5K4.

Proof. Consider a Gallai 3-coloring of K20 (using red, blue, and green) that avoids a red F2, a blue K3, and a green K3.
Denote its vertex set by V . By Equation (3), there must exist a redK4, and we denote its vertex set by V1 and select a vertex
x1 ∈ V1. Now consider the Gallai 3-coloring ofK19 induced by the vertex set V −{x1}. Applying (3) again, there exists a red
K4, whose vertex set we denote by V2. Note that that |V1 ∩ V2| ∈ {0, 1, 2, 3}. However, if any of the cases |V1 ∩ V2| ∈ {1, 2, 3}
hold, then a red F2 is formed (see Figure 3.1). So, V1 ∩ V2 = ∅. Select a vertex x2 ∈ V2. Repeating this process, the K18

Figure 3.1: Three cases where two red K4-subgraphs share 1, 2, and 3 vertices, respectively. In all three cases, a red F2

is a subgraph, as is highlighted in the second row.

induced by the vertex set V − {x1, x2} contains a red K4, whose vertex set V3 must be disjoint from V1 ∪ V2 by the previous
argument. Pick a vertex x3 ∈ V3. Consider the K17 induced by V − {x1, x2, x3}, which again contains a red K4 that is
necessarily disjoint from V1 ∪ V2 ∪ V3. Denote its vertex set by V4. The vertex sets V1, V2, V3, V4 are pairwise disjoint and
each induces a red K4. So, our coloring contains a red 4K4.

Observe that the edges joining a pair of vertex sets Vi and Vj (i 6= j), cannot include both of the colors blue and green.
To see this, suppose that Vi = {a, b, c, d} and Vj = {w, x, y, z}. Without loss of generality, suppose that aw is blue. Then,
since a red F2 is avoided, a joins to at most one of {x, y, z} with a red edge. If a rainbow K3 is to be avoided, then a must
join to at least two of the elements in {x, y, z} via blue edges. Assume that ax and ay are blue. If any green edge joins the
two red K4-subgraphs, then it must be incident with z, and it cannot be az. Without loss of generality, suppose that bz
is green (see the first image in Figure 3.2). Avoiding a rainbow K3, edges bx and by must be red (see the second image in
Figure 3.2), but then {b} ∪ Vj contains a red F2. It follows that besides a potential matching of red edges joining Vi and Vj ,
all other edges must be the same color (either blue or green, but not both). We refer to such a color as the dominant color
joining Vi and Vj and note that the dominant color appears on at least 12 edges joining Vi and Vj .

Let V5 consist of the four vertices not contained in V1∪V2∪V3∪V4. If u ∈ V5, then u can join to each Vi, where i ∈ {1, 2, 3, 4}
using at most a single red edge and with blue or green edges, but not both. Once again, we can talk about the dominant
color of the edges joining u to Vi and note that the dominant color appears on at least 3 of the edges joining u and Vi. We
conclude the proof by considering two cases.
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Figure 3.2: Joining edges in two disjoint red K4-subgraphs in a Gallai 3-coloring of K20.

Case 1. Suppose that some u ∈ V5 joins to at least three of V1, V2, V3, and V4 using the same dominant color. Without loss
of generality suppose that blue is the dominant color joining u to V1, V2, and V3. If the dominant color joining V1 and V2 is
blue, then a blue K3 can be formed by including u and a single vertex from each of V1 and V2. For example, if ua, ub, and
uc are blue with a ∈ V1 and b, c ∈ V2 (b and c are assumed to be distinct), then at most one of ab and ac is red and the other
is blue, forming a blue K3 with u. A similar argument follows if the dominant color is blue for the edges joining V2 and V3
or the edges joining V1 and V3. So, the dominant color for edges joining all three of the vertex sets V1, V2, and V3 is green,
and a green K3 can be formed. As we obtain a blue K3 or a green K3, this case cannot occur.

Case 2. Suppose that each vertex in V5 joins to exactly two of V1, V2, V3, and V4 with a dominant color blue and two with
a dominant color green. Assume that some edge in V5 (say, uv) is blue. Without loss of generality, suppose that blue is
the dominant color joining u to V1 and V2 and green is the dominant color joining u to V3 and V4. If v joins with dominant
color blue to either V1 or V2, then a blue K3 can be formed. So, v must join with dominant color blue to V3 and V4 and with
dominant color green to V1 and V2. Regardless of which dominant color (blue or green) appears joining V1 to V2, that color
forms a blue or green K3 with either u or v. This entire argument can be repeated if uv is green. Thus, it follows that
uv must be red. Since u and v were arbitrary vertices in V5, it follows that V5 is a red K4, and hence, our coloring of K20

contains a red 5K4.

Theorem 3.1. In the case of F2 versus two copies of K3, we have

gr(F2,K3,K3) = 21 and gr∗(F2,K3,K3) = 18.

Proof. The lower bound gr(F2,K3,K3) ≥ 21 follows from (2). We now prove that

gr(F2,K3,K3) ≤ 21 and gr∗(F2,K3,K3) ≤ 18

by showing that every Gallai 3-coloring ofK20 tK1,18 contains a red F2, a blueK3, or a greenK3. Consider such a coloring
and let v be the vertex with degree 18. If the K20 avoids a red F2, and blue K3, and a green K3, then by Lemma 3.1, it
must contain a red 5K4, whose vertex sets we label V1, V2, V3, V4, and V5. As was noted in the proof of Lemma 3.1, between
each distinct pair of vertex sets Vi and Vj , there is a dominant color (either blue or green) that appears on all edges, except
possibly a red matching. In order for a blue K3 and a green K3 to be avoided, the dominant colors for the edges spanning
V1, V2, V3, V4, and V5 must form a blue C5 and a green C5 (see Figure 3.3) as this coloring corresponds with the only critical
coloring for r(K3,K3).

Note that v must join to each Vi using at most one red edge and with all other edges either blue or green (but not both).
So, as before, we can talk about a dominant color (blue or green) joining v to each Vi. Since 18 edges join v to the K20,
each Vi joins to v with at least two edges, one of which must be a color other than red. By the Pigeonhole Principle, v must
join to at least three of V1, V2, V3, V4, and V5 with the same dominant color. Without loss of generality, suppose that v has
dominant color blue joining to V1, V2, and V3. Then if any pair of these vertex sets join with dominant color blue, a blue K3

can be formed. Otherwise, all three of them must join with dominant color green, and a greenK3 can be formed. It follows
that

gr(F2,K3,K3) ≤ 21 and gr∗(F2,K3,K3) ≤ 18.

To complete the proof of the theorem, it remains to be shown that

gr∗(F2,K3,K3) ≥ 18.
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Figure 3.3: A Gallai 3-coloring of K20 that avoids a red F2, a blue K3, and a green K3.

v

Figure 3.4: A Gallai 3-coloring of K20 tK1,17 that avoids a red F2, a blue K3, and a green K3.

Consider a critical coloring for r(K3,K3) in blue and green (the base graph) and replace each of its vertices with red
K4-subgraphs (again, see Figure 3.3). Label the K4 vertex sets V1, V2, V3, V4, and V5 and suppose that V1V2V3V4V5V1
corresponds with a blue C5 in the base graph. Introduce vertex v, joining it to V1 and V4 with blue edges, to V2 and V3 with
green edges, and to a single vertex in V5 with a red edge (see Figure 3.4). The resulting K20 tK1,17 avoids a blue K3 and
a green K3. Vertex v cannot be included in a red F2 since it has red degree 1 and no red connected component in the K20

is large enough to contain a red F2. Thus, gr∗(F2,K3,K3) ≥ 18, completing the proof of the theorem.

4. Conclusion

We now conclude by stating some conjectures and directions for future research motivated by our work. The following
conjecture generalizes Conjecture 1.1.

Conjecture 4.1. For all t ≥ 3 and m ≥ gr(Kn2 , . . . ,Knt) ≥ 3,

gr(Fm,Kn2
, . . . ,Knt

) = 2m(gr(Kn2
, . . . ,Knt

)− 1) + 1.

Whenever Conjecture 1.1 is true, we obtain the following conjecture concerning the corresponding star-critical Ramsey
numbers.

Conjecture 4.2. If r(Fm,Kn) = 2m(n− 1) + 1 for some fixed m ≥ n ≥ 3, then

r∗(Fm,Kn) = 2m(n− 2) + 2.

Of course, this conjecture can be further generalized to the multicolor case.
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Conjecture 4.3. If gr(Fm,Kn2 , . . . ,Knt) = 2m(gr(Kn2 , . . . ,Knt)− 1) + 1 for some t ≥ 3 andm ≥ gr(Kn2 , . . . ,Knt) ≥ 3, then

gr∗(Fm,Kn2
, . . . ,Knt

) = 2m(gr(Kn2
, . . . ,Knt

)− 2) + 2.

Other related variations of Ramsey numbers that have been considered include r(K1+mK3,Kn) [11], r(K1+mKt,Kn)

[19], and r(K1 + mH, kKn) [10], along with the corresponding star-critical Ramsey numbers. At present, no multicolor
analogues for these numbers have been studied.
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