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Abstract

The degree of a vertex u in a graph G is denoted by dG(u). The symmetric division deg (SDD) index of G is denoted by
SDD(G) and is defined as SDD(G) =

∑
xy∈E(G)[dG(x)/dG(y) + dG(y)/dG(x)], where E(G) is the set of all edges of G. A

connected graph with the same number of vertices and edges is known as a unicyclic graph. The girth of a unicyclic graph
is the number of edges of its unique cycle. This paper solves the problem of characterizing graphs attaining the first two
minimum values of the SDD index over the class of all unicyclic graphs of fixed order and with a given girth. Applications
of the obtained results yield the solution to the problem of determining graphs having the first three minimum values of
the SDD index among all unicyclic graphs of a given order.
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1. Introduction

The graphs considered in this paper are connected and finite. The graph-theoretical terms used in this paper, but not
defined here, can be found in some standard books, like [6,7,14].

By a graph invariant, we mean a property of graphs that is preserved by graph isomorphism. We remark here that a
graph invariant may be the same for two non-isomorphic graphs. In chemical graph theory, the graph invariants that take
only real numbers are often referred to as topological indices [21,24] or molecular (structure) descriptors. Many topological
indices have chemical application; for example, see [12,13,20]. The symmetric division deg (SDD) index, introduced in [23],
is a topological index that has a strong correlation with the total surface area of polychlorobiphenyls [23]. This topological
index, for a graph G, is defined as

SDD(G) =
∑

xy∈E(G)

(
dG(x)

dG(y)
+

dG(y)

dG(x)

)
, (1)

where E(G) is the edge set of G and dG(x) denotes the degree of the vertex x ∈ V (G). The ratios of the arithmetic and
harmonic means of the degrees of the end-vertices of edges of G may also be used to produce a topological index involving
the SDD index (see [2]). Also, the SDD index of G can be rewritten [4] as

SDD(G) = 2|E(G)|+
∑

xy∈E(G)

(dG(x)− dG(x))
2

dG(x)dG(y)
,

which may be preferred over the formula (1) in certain circumstances. Furtula et al. [10] compared the applicability of the
SDD index with certain popular topological indices and found it as a viable topological index, surpassing the predictive
performance of several indices. Vasilyev [22] appears to have started the comprehensive study of mathematical aspects
related to the SDD index. Most of the known bounds and extremal results related to the SDD index can be found in the
survey paper [5]. Das [8] solved one of the open problems, concerning the SDD index, posed in [5]. In the recent paper [3],
an upper bound on the SDD index of a graph in terms of its order, size and maximum degree is derived. The reader may
also consult the references [1,9,11,15,16,18,19] for additional detail about the SDD index.
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A (connected) graph with the same number of vertices and edges is known as a unicyclic graph. The girth of a unicyclic
graph is the number of edges of its unique cycle. The present paper solves the problem of characterizing graphs attaining
the first two minimum values of the SDD index over the class of all unicyclic graphs of fixed order and with a given
girth. Applications of the obtained results yield the solution to the problem of determining graphs having the first three
minimum values of the SDD index among all unicyclic graphs of a given order. The latter problem was solved partially by
Vasilyev [22] and completely by Pan and Li [17].

2. Preliminaries

In this section, we define some notations and terms used in the subsequent section.
A graph of order 1 is known as a trivial graph. By an n-order graph, we mean a graph with order n. The n-order path

graph and cycle graph are denoted by Pn and Cn, respectively. For a vertex x of a graph G, we use the notation NG(x) to
represent the set of all those vertices of G that are adjacent to x. The members of NG(x) are called the neighbors of x. A
vertex x of a graph G with dG(x) = 1 is known as a pendent vertex. A non-trivial path P : x1x2 · · ·xp in a graph G is said
to be a pendent path of G if

min{dG(x1), dG(xp)} = 1, max{dG(x1), dG(xp)} ≥ 3, and dG(xi) = 2 when 2 ≤ i ≤ p− 1.

We end this section with the following known result, which is used in the proofs of the main results of this paper:

Lemma 2.1 (see [17]). For a graph G having m edges and r pendent paths, the following inequality holds:

SDD(G) ≥ 2m+
2r

3
.

3. Results

Denote by Un,k the set of all n-order unicyclic graphs with girth k, where 3 ≤ k ≤ n. Certainly, set class ∪nk=3Un,k consists
of all n-order unicyclic graphs. Note that the class Un,n consists of only the cycle graph Cn. Also, observe that the class
Un,n−1 consists of only one graph; namely, the graph obtained from the cycle graph Cn−1 by attaching exactly one pendent
vertex to any vertex of Cn−1. For 3 ≤ k ≤ n − 2, denote by Un,k the n-order graph created from the k-order cycle Ck and
(n−k)-order path Pn−k by inserting an edge between a pendent vertex of Pn−k and a vertex of Ck. The graph Un,k is shown
in Figure 3.1.

x

Un,k(3 ≤ k ≤ n− 2) U∗n,n−3 U∗n,n−2

Cn−3

y

x

Ck
Cn−2

y

x

Figure 3.1: The graph Un,k(3 ≤ k ≤ n− 2) and the unique graphs belonging to the classes U∗n,n−3 and U∗n,n−2.

Theorem 3.1. If G ∈ Un,k with 3 ≤ k ≤ n− 2, then

SDD(G) ≥ 2n+ 1,

where the equality holds if and only if G ∼= Un,k (see Figure 3.1). Equivalently, the graph Un,k uniquely attains the minimum
SDD index, which is 2n+ 1, over the class Un,k for 3 ≤ k ≤ n− 2.

Proof. Let r be the number of pendent paths of G. If r = 1, then G ∼= Un,k and hence

SDD(G) = 2n+ 1.

If r ≥ 2, then Lemma 2.1 implies that

SDD(G) ≥ 2n+
2r

3
≥ 2n+

2(2)

3
> 2n+ 1,

which completes the proof.
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Since SDD(Cn) = 2n and the SDD index of the n-order unicyclic graph with girth n− 1 is 2n+
5

3
, from Theorem 3.1 the

next two results follow; particularly, the first one of these two results was first established in [22] and the second one was
derived in [17].

Corollary 3.1. For every integer n greater than 4, the cycle graph Cn uniquely attains the minimum SDD index (which is
2n) over the class of all n-order unicyclic graphs. Equivalently, if G is an n-order unicyclic graph such that n ≥ 5, then

SDD(G) ≥ 2n,

with equality if and only if G ∼= Cn.

Corollary 3.2. For every integer n greater than 4, only the graph(s) of the class {Un,k : 3 ≤ k ≤ n− 2} attain(s) the second-
minimum value of the SDD index among all n-order unicyclic graphs, where the graph Un,k is depicted in Figure 3.1. ( The
mentioned second-minimum value of the SDD index is 2n + 1.) Equivalently, if G is an n-order unicyclic graph different
from the cycle Cn such that n ≥ 5, then

SDD(G) ≥ 2n+ 1,

with equality if and only if G ∈ {Un,k : 3 ≤ k ≤ n− 2}.

Next, we find the second-minimum value of the SDD index of the graphs belonging to the class Un,k. For this, we first
define certain graphs. Let x be the unique vertex of degree 3 in the graph Un,k (see Figure 3.1). When k ∈ {n − 3, n − 2},
we denote by U∗n,k the class of the unique graph obtained from Un,k by removing its unique pendent vertex and making it
adjacent with one (say y) of those two neighbors of x that lie on the cycle. The graphs U∗n,n−3 and U∗n,n−2 are also depicted
in Figure 3.1.

For 3 ≤ k ≤ n − 4, denote by U∗n,k the class of the graph(s) obtained from the cycle Ck by attaching two pendent paths
of lengths `1 and `2 at the vertices x, y ∈ V (Ck) (one at x and the other at y), where min{`1, `2} ≥ 2 and xy ∈ E(Ck). For
3 ≤ k ≤ n − 5, denote by U†n,k the class of the graph(s) obtained from the cycle Ck and the path Pn−k by inserting an edge
between a vertex x of Ck and a vertex y of Pn−k, where the distance between y and each of the pendent vertices of Pn−k is
at least 2. The general forms of the graphs belonging to U∗n,k and U†n,k are shown in Figure 3.2.

x

y

Ck x y
Ck

Figure 3.2: The general forms of the graphs belonging to U∗n,k (left) and U†n,k (right). The length of every pendent path in
each depicted graph is at least 2.

Theorem 3.2. Let G ∈ Un,k such that G � Un,k (see Figure 3.1).

(i). If 3 ≤ k ≤ n− 4, then

SDD(G) ≥ 2n+
5

3
. (2)

If 3 ≤ k ≤ n− 5, then the equality in (2) holds if and only if either G ∈ U∗n,k or G ∈ U†n,k (see Figure 3.2). If k = n− 4,
then the equality in (2) holds if and only if G ∈ U∗n,k.

(ii). If k = n− 3, then

SDD(G) ≥ 2n+
7

3
,

where the equality holds if and only if G ∈ U∗n,n−3 (see Figure 3.1).

(iii). If k = n− 2, then

SDD(G) ≥ 2n+ 3 ,

where the equality holds if and only if G ∈ U∗n,n−2 (see Figure 3.1).
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Proof. Let r be the number of pendent paths of G. Since G � Un,k, it holds that r ≥ 2.

(i). If r ≥ 3, then Lemma 2.1 implies that

SDD(G) ≥ 2n+
2r

3
≥ 2n+

2(3)

3
> 2n+

5

3
.

Now, assume that r = 2. Then, the graph G belongs to one of the three classes of graphs as shown in Figure 3.3; that is,
G ∈ U1

n,k∪U2
n,k∪U3

n,k. These classes are defined as follows. The class U1
n,k consists of the graph(s) obtained from the k-order

cycle Ck by attaching two pendent paths at two distinct vertices x, y ∈ V (Ck) (one at x and the other at y) such that one of
the pendent paths has length a and the other has length b, where a ≥ b ≥ 1 and a + b = n − k. The class U2

n,k consists of
the graph(s) obtained from the k-order cycle Ck by attaching two pendent paths at one vertex x ∈ V (Ck) such that one of
the pendent paths has length a and the other has length b, where a ≥ b ≥ 1 and a + b = n − k. The class U3

n,k consists of
the graph(s) obtained from the k-order cycle graph Ck and the (a+ 1)-order path graph Pa+1 by inserting a path of length
b between a vertex x ∈ V (Ck) and a non-pendent vertex y ∈ V (Pa+1), where a ≥ 2, b ≥ 1 and a+ b = n− k.

Ck

x

y

x

x

U1
n,k U2

n,k

U3
n,k

Ck

Ck

Figure 3.3: The general forms of the graphs belonging to the classes U1
n,k, U2

n,k, and U3
n,k, which are used in the proof of

Theorem 3.2(i), where 3 ≤ k ≤ n− 4.

Case 1. G ∈ U1
n,k.

Recall that a ≥ b ≥ 1 and a + b = n − k. Since k ≤ n − 4, the integers a and b cannot be simultaneously equal to 1. If
xy ∈ E(G), then

SDD(G) =


2n+

7

3
when a > b = 1,

2n+
5

3
when a > b > 1.

If xy /∈ E(G), then

SDD(G) =


2n+

8

3
when a > b = 1,

2(n+ 1) when a > b > 1.

Case 2. G ∈ U2
n,k.

Note that, in this case too, the integers a and b cannot be simultaneously equal to 1. Hence, we have

SDD(G) =


2n+

17

4
when a > b = 1,

2n+ 3 when a > b > 1.

Case 3. G ∈ U3
n,k.

In this case, recall that a ≥ 2, b ≥ 1, and a+ b = n− k.
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First, assume that b = 1. Since k ≤ n − 4, we have a ≥ 3 and hence the vertex y (that is the common vertex of the
pendent paths of U3

n,k) is adjacent to at most one pendent vertex. Thus, we have

SDD(G) =


2n+

7

3
when the vertex y is adjacent to exactly one pendent vertex,

2n+
5

3
when the vertex y is not adjacent to any pendent vertex.

Next, we assume that b > 1. Then, we have

SDD(G) =



2n+
10

3
when the vertex y is adjacent to two pendent vertices,

2n+
8

3
when the vertex y is adjacent to exactly one pendent vertex,

2(n+ 1) when the vertex y is not adjacent to any pendent vertex.

By combining the values of the SDD index obtained in all the above cases and after an elementary comparison, we arrive
at the desired conclusion of part (i).

(ii). Since k = n− 3, we have r ∈ {2, 3}.

Case 1. r = 3.
In the considered case, the graph G belongs to one of the three classes of graphs whose general forms are shown in Figure
3.4; that is, G ∈ H1 ∪H2 ∪H3.

Figure 3.4: The general forms of the graphs belonging to the classes H1, H2, and H3, which are used in the proof of
Theorem 3.2(ii).

Subcase 1.1. G ∈ H1.
If there is an edge between x and y, then

SDD(G) = 2n+
79

12
.

If x and y are not adjacent, then
SDD(G) = 2n+

43

6
.
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Subcase 1.2. G ∈ H2.
Note that the class H2 consists of only one graph and hence we have

SDD(G) = 2n+
57

5
.

Subcase 1.3. G ∈ H3.
If all the three vertices x, y, and z are pairwise adjacent, then n = 6 and hence

SDD(G) = 16 > 2n+
7

3
.

If there is no edge between the vertices of exactly one of the pairs (x, y), (x, z), (y, z), then we have

SDD(G) = 2n+
13

3
.

If there is an edge between the vertices of exactly one of the pairs (x, y), (x, z), (y, z), then we have

SDD(G) = 2n+
14

3
.

If all the three vertices x, y, and z are pairwise non-adjacent, then we have SDD(G) = 2n+ 5.

By comparing the obtained values of the SDD index in the above three subcases, we conclude that

SDD(G) > 2n+
7

3
,

as desired.

Case 2. r = 2.
In this case, either G ∈ U∗n,n−3 or the graph G is one of the three graphs shown in Figure 3.5.

Figure 3.5: The graphs G1, G2, and G3 used in the proof of Theorem 3.2(ii).

On the other hand, we have
SDD(G1) = 2n+

8

3
,

SDD(G2) = 2n+
17

4
,

SDD(G3) = 2n+ 3 ,

and
SDD(U) = 2n+

7

3
,

where U∗n,n−3 = {U}. Consequently, we have

SDD(U) = 2n+
7

3
< SDD(Gi),

for every i ∈ {1, 2, 3}, as desired.
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(iii). Note that the graph G belongs to either of the two classes of graphs, whose general forms are depicted in Figure 3.6.

Figure 3.6: The general forms of the graphs belonging to the classes J1 and J2 used in the proof of Theorem 3.2(iii).

Case 1. G ∈ J1.
If the vertices x and y are non-adjacent, then

SDD(G) = 2n+
10

3
.

If there is an edge between the vertices x and y, then G ∈ U∗n,n−2 and SDD(G) = 2n+ 3.

Case 2. G ∈ J2.
In this case, we have

SDD(G) = 2n+
11

2
.

Hence, SDD(G) ≥ 2n+ 3 with equality if and only if G ∈ U∗n,n−2.

From Corollary 3.2 and Theorem 3.2, the next result follows, which was first established in [17].

Corollary 3.3. For every integer n greater than 4, only the graph(s) of the class H∗ ∪ (∪n−4k=3U
∗
n,k) ∪ (∪n−5k=3U

†
n,k) attain(s) the

third-minimum value of the SDD index among all n-order unicyclic graphs, where H∗ is the n-order graph of girth n − 1

and the general forms of the graphs belonging to the classes U∗n,k and U†n,k (with 3 ≤ k ≤ n − 4) are depicted in Figure 3.2.
(The mentioned third-minimum value of the SDD index is 2n + 5

3 .) Equivalently, if G is an n-order unicyclic graph, not
belonging to {Cn} ∪ {Un,k : 3 ≤ k ≤ n− 2}, such that n ≥ 5, then

SDD(G) ≥ 2n+
5

3
,

with equality if and only if G ∈ H∗ ∪ (∪n−4k=3U
∗
n,k) ∪ (∪n−5k=3U

†
n,k).

4. Concluding remarks

We have solved, in Theorems 3.1 and 3.2, the problem of characterizing graphs attaining the first two minimum values
of the SDD index over the class of all unicyclic graphs of fixed order and with a given girth. By applying these theorems,
in Corollaries 3.1, 3.2, and 3.3, we have rediscovered the solution to the problem of determining graphs having the first
three minimum values of the SDD index over the class of all unicyclic graphs of a given order. The present study can be
extended in several ways; for instance, it would be interesting to establish the maximal versions of Theorems 3.1 and 3.2.
Also, in the survey paper [5], several open problems related to the SDD index were posed. It seems to be interesting to
address those open problems; particularly, the one concerning the characterization of the graph(s) having the minimum
SDD index over the class of all n-order unicyclic graphs with a given number of pendent vertices.
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