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Abstract
A Catalan word with n letters, w = w1w2 . . . wn over the set of positive integers is a word in which w1 = 1 and for each
i ∈ {2, 3 . . . , n}, the inequality wi ≤ wi−1 + 1 holds. We find generating functions A(x, qi) for the number of letters equal
to i in Catalan words with n letters. We also develop the generating function A(x, qi|j) that tracks the number of letters i
in Catalan words ending in a letter j. The relationship between A(x, qi) and A(x, qi|j) is fundamental to the kernel method
used to obtain these generating functions.

Keywords: Catalan words; letters; generating functions; kernel method.

2020 Mathematics Subject Classification: 05A05, 05A15.

1. Introduction

A Catalan word with n letters, w = w1w2 . . . wn over the set of positive integers is a word in which w1 = 1 and for each
i ∈ {2, 3 . . . , n}, wi ≤ wi−1 + 1. We denote the set of Catalan words of length n by Cn, and let C = ∪n≥1Cn. Catalan words
have received considerable attention from researchers in recent years; for example, see [1, 2, 7, 9]. The number of these
words is given by the nth Catalan number c(n) = 1

n+1

(
2n
n

)
. See Stanley’s book [13] for the ways in which c(n) tracks a

surprisingly large number of different combinatorial objects. Also, see the introduction to [7] for an explanation of why
c(n) counts the number of Catalan words with n letters.

Catalan words may be represented as bargraphs, where a letter i is represented as a column of height i and the letter
order of the Catalan word is preserved in the bargraph. Catalan words thus form a subset of objects that can be represented
as bargraphs. For a comprehensive survey on bargraphs, see the paper [10]. For other recent papers on bargraphs,
see [3–6,8].

What we aim to do in this paper is to provide a bivariate generating function A(x, qi) that counts the number of occur-
rences of letters i, tracked by qi in Catalan words with n letters, tracked by variable x. In other words,

A(x, qi) :=
∑
n≥1

∑
w∈Cn

xnq
|w|i
i ,

where |w|i is the number of letters i in w.
The method we use is to introduce Catalan words ending with a letter j with generating function A(x, qi|j). Note that if

a Catalan word ends with j, then it necessarily contains all values i ≤ j. Thereafter we introduce a third variable v which
tracks the size of the last letter in any Catalan word, in addition to trackers for the number of letters and the number of
letters i. This is set up in Equation (6) and solved using the kernel method in Equation (7) and what follows.

2. Counting letters i

Let x track the number of letters and qi track the number of letters i. We denote the set of Catalan words of length n

ending with a letter j by Cn,j , and for j < i let A(x, qi|j) =
∑

n≥1 x
n
∑

w∈Cn,j
q
|w|i
i . In other words, for j < i, A(x, qi|j) is the

generating function for the number of Catalan words ending in j, according to the number of letters i. Likewise A(x, qi|bj)
is the generating function for the number of such Catalan words ending in bj.

Assume first i = 1. Then

A(x, q1|1) = xq1 +
∑
b≥1

A(x, q1|bj) = xq1 + xq1
∑
b≥1

A(x, q1|b).
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For j > 1,
A(x, q1|j) =

∑
b≥j−1

A(x, q1|bj) = x
∑

b≥j−1

A(x, q1|b).

Now, define A(x, q1; v) :=
∑

j≥1 A(x, q1|j)vj−1. We multiply the previous equations by vj−1 and sum on j ≥ 1 to obtain

A(x, q1; v) = xq1 + xq1
∑
b≥1

A(x, q1|b) +
∑
j>1

x
∑

b≥j−1

A(x, q1|b)vj−1

= xq1 + xq1
∑
b≥1

A(x, q1|b) + x
∑
b≥1

b+1∑
j=2

A(x, q1|b)vj−1

= xq1 + xq1
∑
b≥1

A(x, q1|b) + xv
∑
b≥1

A(x, q1|b)
1− vb

1− v

= xq1 + xq1A(x, q1; 1) +
xv

1− v
(A(x, q1; 1)− vA(x, q1; v)). (1)

From this we obtain

(1− v + xv2)A(x, q1; v) = (1− v)(xq1 + xq1A(x, q1; 1)) + xvA(x, q1; 1). (2)

By the kernel method (see [11, 12]), we choose v by setting 1 − v + xv2 = 0. The relevant root for the kernel method is
v = 1−

√
1−4x
2x = C(x), where C(x) is the generating function for the Catalan numbers. Using this value, we obtain

(1− C(x))(xq1 + xq1A(x, q1; 1)) + xC(x)A(x, q1; 1) = 0,

with solution
A(x, q1) := A(x, q1; 1) =

q1
(
2x+

√
1− 4x− 1

)
q1
(
2x+

√
1− 4x− 1

)
−
√
1− 4x+ 1

=
q1(1− C(x))

q1C(x)− C(x)− q1
. (3)

Using variable q1 to track the number of 1’s in Catalan words, we deduce from the above equation that

A(x, q1|1) = xq1A(x, q1; 1) =
xq21(1− C(x))

q1C(x)− C(x)− q1
. (4)

Next, let qi track the number of letters i. Assume i 6= 1.
For i 6= j = 1,

A(x, qi|j) = x+
∑

b≥j−1

A(x, qi|bj) = x+ x
∑

b≥j−1

A(x, qi|b).

For i 6= j > 1,
A(x, qi|j) =

∑
b≥j−1

A(x, qi|bj) = x
∑

b≥j−1

A(x, qi|b),

and
A(x, qi|i) = xqi

∑
b≥i−1

A(x, qi|b).

Now, as before, define A(x, qi; v) :=
∑

j≥1 A(x, qi|j)vj−1. We multiply the previous equations by vj−1 and sum on j ≥ 1 to
obtain

A(x, qi; v) = x+ x
∑
b≥1

A(x, qi|b) +
∑
j>1

x
∑

b≥j−1

A(x, qi|b)vj−1 − x(1− qi)
∑

b≥i−1

A(x, qi|b)vi−1

= x+ x
∑
b≥1

A(x, qi|b) + x
∑
b≥1

b+1∑
j=2

A(x, qi|b)vj−1 − x(1− qi)
∑

b≥i−1

A(x, qi|b)vi−1

= x+ x
∑
b≥1

A(x, qi|b) + xv
∑
b≥1

A(x, qi|b)
1− vb

1− v
− x(1− qi)

∑
b≥i−1

A(x, qi|b)vi−1

= x+ xA(x, qi; 1) +
xv

1− v
(A(x, qi; 1)− vA(x, qi; v))−

1− qi
qi

vi−1A(x, qi|i). (5)
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Solving for A(x, qi; v), we obtain

(1− v + xv2)A(x, qi; v) = (1− v)(x+ xA(x, qi; 1)) + xvA(x, qi; 1)−
1− qi
qi

(1− v)vi−1A(x, qi|i). (6)

We apply the kernel method, hence putting v = C(x) in the above equation, leads to

(1− C(x))(x+ xA(x, qi; 1)) + xC(x)A(x, qi; 1)−
1− qi
qi

(1− C(x))C(x)i−1A(x, qi|i) = 0. (7)

Now, let q2 track the number of 2’s in Catalan words. Substituting i = 2 in Equation (7), we obtain

(1− C(x))(x+ xA(x, q2; 1)) + xC(x)A(x, q2; 1)−
1− q2
q2

(1− C(x))C(x)A(x, q2|2) = 0. (8)

Since A(x, q2|2) = q2xA(x, q2; 1), we have

(1− C(x))(x+ xA(x, q2; 1)) + xC(x)A(x, q2; 1)−
1− q2
q2

(1− C(x))C(x)q2xA(x, q2; 1) = 0. (9)

Letting A(x, q2) := A(x, q2; 1), we obtain the solution

A(x, q2) = −
x
(
2x+

√
1− 4x− 1

)
q2
(
−
((√

1− 4x− 3
)
x
)
+
√
1− 4x− 1

)
+ (x− 1)

(
2x+

√
1− 4x− 1

)
=

1− C(x)

(q2 − 1)(C(x)2 − C(x))− 1
. (10)

In what follows, we introduce the following convention: When we use the generating function Â(x, qi|i), the qi tracks all
i’s other than the last one and when we use Â(x, qi|j) in the case where j < i, the qi tracks the total number of i’s.

We note that for any integer i ≥ 3,

Â(x, qi|i) = x(Â(x, qi; 1)−
i−2∑
j=1

Â(x, qi|j)),

since a Catalan word ending in such i must have at least 2 letters, but we also need to ensure by the Catalan word property
that the previous letter does not end with a letter in {1, 2, . . . , i− 2}. Thus, it follows that

Â(x, qi|i− 1) = x(Â(x, qi; 1)−
i−3∑
j=1

Â(x, qi|j)).

From this we deduce that for i ≥ 3,
Â(x, qi|i) = Â(x, qi|i− 1)− xÂ(x, qi|i− 2),

with initial values given by Â(x, qi|1) = xA(x, qi; 1) + x and Â(x, qi|2) = A(x, qi; 1). Solving this recursion, and noting that
A(x, qi|i) = qiÂ(x, qi|i) we obtain the next result.

Proposition 2.1. For i ≥ 1 the generating function for the number of letters i in Catalan words ending in i (tracked by qi),
with letters tracked by x, is given by

A(x, qi|i) = qi
(A(x, qi; 1) + 1)x

(
(xC(x))i − (1− xC(x))i

)
− (xC(x))i + xC(x)

(
(xC(x))i + (1− xC(x))i

)
2xC(x)− 1

. (11)

Substituting A(x, qi|i) into Equation (7), we obtain the next theorem.

Theorem 2.1. The generating function for the number of letters i, tracked by qi in Catalan words with n letters tracked by
x is given by

A(x, qi) := A(x, qi; 1) =
(C(x)− 1)

(
−xC(x) + 2x2C(x)2 + (qi − 1)xC(x)1+iB2(x)

)
x (−C(x) + 2xC(x)2 + (qi − 1)C(x)iB1(x)(1− C(x)))

+
(C(x)− 1)(qi − 1)C(x)i

(
xB1(x)− (xC(x))i

)
x (−C(x) + 2xC(x)2 + (qi − 1)C(x)iB1(x)(1− C(x)))

, (12)

where we use the abbreviations B1(x) := (xC(x))i − (1− xC(x))i and B2(x) := (xC(x))i + (1− xC(x))i.
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3. Generating functions for the number of letters i in the cases where i ≤ 5

By using Theorem 2.1, we obtain the following generating functions and series expansions:
For i = 1, we obtain the generating function

A(x, q1; 1) =
q1(1− C(x))

q1C(x)− C(x)− q1
(13)

with series expansion that begins

q1x+
(
q1 + q21

)
x2 +

(
2q1 + 2q21 + q31

)
x3 +

(
5q1 + 5q21 + 3q31 + q41

)
x4

+
(
14q1 + 14q21 + 9q31 + 4q41 + q51

)
x5 +

(
42q1 + 42q21 + 28q31 + 14q41 + 5q51 + q61

)
x6. (14)

When i = 2, we obtain the generating function

A(x, q2; 1) =
1− C(x)

(q2 − 1)(C(x)2 − C(x))− 1
(15)

with series expansion that begins

x+ (1 + q2)x
2 +

(
1 + 3q2 + q22

)
x3 +

(
1 + 7q2 + 5q22 + q32

)
x4

+
(
1 + 16q2 + 17q22 + 7q32 + q42

)
x5 +

(
1 + 39q2 + 51q22 + 31q32 + 9q42 + q52

)
x6. (16)

When i = 3, we obtain the generating function

A(x, q3; 1) =
x2(C(x)− 1)((q3 − 1)C(x)− q3)

(q3 − 1) (2x2 − 3x+ 1)C(x)− q3(x− 1)2 − 2x+ 1
(17)

with series expansion that begins

x+ 2x2 + (4 + q3)x
3 +

(
8 + 5q3 + q23

)
x4 +

(
16 + 18q3 + 7q23 + q33

)
x5

+
(
32 + 57q3 + 33q23 + 9q33 + q43

)
x6 +

(
64 + 170q3 + 131q23 + 52q33 + 11q43 + q53

)
x7. (18)

When i = 4, we obtain the generating function

A(x, q4; 1) =
x2(C(x)− 1)((q4 − 1)(x− 1)C(x) + q4 + x− 1)

(q4 − 1) (2x3 − 7x2 + 5x− 1)C(x) + q4(1− 2x)2 + x3 − 4x2 + 4x− 1
(19)

with series expansion that begins

x+ 2x2 + 5x3 + (13 + q4)x
4 +

(
34 + 7q4 + q24

)
x5

+
(
89 + 33q4 + 9q24 + q34

)
x6 +

(
233 + 132q4 + 52q24 + 11q34 + q44

)
x7. (20)

When i = 5, we obtain the generating function

A(x, q5; 1) =
x2(C(x)− 1)

(
(q5 − 1)

(
2x2 − 3x+ 1

)
C(x)− q5(x− 1)2 − 2x+ 1

)
(q5 − 1) (3x4 − 13x3 + 16x2 − 7x+ 1)C(x)− q5 (x2 − 3x+ 1)

2 − 6x3 + 11x2 − 6x+ 1
(21)

with series expansion that begins

x+ 2x2 + 5x3 + 14x4 + (41+ q5)x
5 +

(
122 + 9q5 + q25

)
x6 +

(
365 + 52q5 + 11q25 + q35

)
x7. (22)

We illustrate the bold terms in the above series expansion. It is clear that words of lengths 1 to 4 have no letters of size 5.
Exactly one of the 42 Catalan words of length 5 has a letter 5; namely the word 12345. For the bold coefficient of x6, the
nine words of this type are 112345, 122345, 123345, 123445, 123451, 123452, 123453, 123454, 123456.

We note that the case i = 1 is in the OEIS [14], where it has reference number A033184 and it refers to the Catalan
triangle transposed. We leave as an open question for the reader whether there are some direct relations between Catalan
words counted with respect to the number of letters and the number of 1s, and the Catalan triangle.

For cases i = 3, 4, 5, the coefficients of xnq0i are found in [14] as the number of plane trees with n edges and height at
most i − 1. These results follow from the bijections between Catalan words, Dyck paths and plane trees. The bijection
between Catalan words and Dyck paths is found in [7]. A standard bijection between Dyck paths and plane trees is found
in [13]. As a result of these bijections A(x, qi) defined in Theorem 2.1 also enumerates plane trees with n+ 1 nodes and k

nodes at level i.
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