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Abstract

Let G(V,E) be a graph of order n. A modular irregular labeling of G is an edge k-labeling φ : E(G) → {1, 2, . . . , k} provided
that the weight function σ : V (G) → Zn defined by σ(u) = wtφ(u) =

∑
uv∈E(u) φ(uv) (mod n) is bijective, where E(u)

denotes the set of all those edges in E(G) that are incident with the vertex u and Zn is the group of integers modulo n. This
weight function is called a modular weight of the vertex u. The minimum number k such that the graph G has a modular
irregular labeling with the largest label k is called the modular irregularity strength of G. In this paper, we determine
the modular irregularity strength of the corona product of a graph G with the edgeless graph of order p (that is, the graph
consisting of p isolated vertices) and with the path graph P3 of order 3, where G is a regular graph containing a 1-factor.
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1. Introduction

In 1988, Chartrand et al. [7] introduced the concept of an irregular labeling. An irregular labeling of a simple graph G is
an edge labeling φ : E(G) → {1, 2, . . . , k}, where k is a positive integer, such that every two distinct vertices have distinct
weights. The weight of a vertex u ∈ V (G) is defined by wtφ(u) =

∑
uv∈E(u) φ(uv), where E(u) denotes the set of all the

edges in E(G) incident with the vertex u. The irregularity strength of G, denoted by s(G), is the minimum number k for
which the graph G admits an irregular labeling with the label at most k. If there exists no such labeling for the graph G,
then s(G) = ∞. It is clear that s(G) < ∞ if and only if G contains no isolated edges and has at most one isolated vertex.
Chartrand et al. [7] also give a lower bound for the irregularity strength of a graph:

Theorem 1.1. [7] If G is a connected graph of order at least 3 containing ni vertices of degree i, then

s(G) ≥ max
1≤i≤∆(G)

{
ni − 1

i
+ 1

}
.

Other upper bounds for the irregularity strength have been derived in [2,9–11]. There are many variations of irregular
labeling in the literature; for instance, edge irregular labeling, total vertex irregular labeling, total edge irregular labeling
[1,4], etc. Another variation of irregular labeling is the modular irregular labeling, which was introduced by Bača et al. [6].
A modular irregular labeling of a graph G of order n is an edge k-labeling φ : E(G)→ {1, 2, . . . , k} provided that the weight
function σ : V (G) → Zn defined by σ(u) = wtφ(u) =

∑
uv∈E(u) φ(uv) (mod n) is bijective, where E(u) denotes the set of all

those edges in E(G) that are incident with the vertex u and Zn is the group of integers modulo n. This weight function
is called the modular weight of the vertex u. The minimum number k such that the graph G admits a modular irregular
labeling with the largest label k is called the modular irregularity strength ofG, denoted by ms(G). IfG admits no modular
irregular labeling, it is defined as ms(G) =∞.

Bača et al. [6] proved a sufficient condition for the modular irregularity strength of a graph to be infinite. They also
proved a relation between the irregularity strength of a graph G and its modular irregularity strength:

Theorem 1.2. [6] If G is a graph of order n such that n ≡ 2 (mod 4), then G has no modular irregular k-labeling, i.e.,
ms(G) =∞.

Theorem 1.3. [6] Let G be a graph with no component of order 1 or 2. Then s(G) ≤ ms(G).
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There are some classes of graphs for which the modular irregularity strength has been determined. In [6], Bača et al.
determined the modular irregularity strength of paths, stars, triangular graphs, cycles, and gear graphs. Later in 2021,
Bača et al. determined the modular irregularity strength of fan graphs and wheels [3, 5]. In the same year, Sugeng et
al. [12] determined the modular irregularity strength of double-stars and friendship graphs. In 2022, Dewi [8] determined
the modular irregularity strength of the corona product of the cycle graph of order n and p isolates, denoted by Cn �Kp.
Recently, in 2023, Sugeng et al. [13] determined the modular irregularity strength of some flower graphs.

The corona product of two graphs G and H, denoted by G �H, is defined as the graph obtained by taking one copy of
G and |V (G)| copies of H and joining the ith vertex of G to every vertex in the ith copy of H. Let G denote the complement
of a graph G. In this paper, we determined the modular irregularity strength of G�Kp and G� P3, where G is a regular
graph containing a 1-factor.

2. Corona product of a graph and isolated vertices

In this section, we discuss the modular irregularity strength of the corona product of graphs G and Kp. First, we deal with
the corona product of a regular graph G and Kp when p is odd.

Theorem 2.1. Let G be a regular graph of order n containing a 1-factor. If p is odd then

ms(G�Kp) = np.

Proof. Let G be an r-regular graph of order n containing a 1-factor M(G). Thus n is even. Let vi, i = 1, 2, . . . , n be vertices
of a graph G and let xi,j , i = 1, 2, . . . , n, j = 1, 2, . . . , p be the pendant vertices in G�Kp that are adjacent to vi.

For p odd, we define an edge labeling ϕ of G�Kp in the following way.

ϕ(vixi,j) =

jn− n+ i, if 1 ≤ i ≤ n and j is odd, 1 ≤ j ≤ p,

jn+ 1− i, if 1 ≤ i ≤ n and j is even, 2 ≤ j ≤ p− 1,
(1)

ϕ(e) =


⌊
np−p−1

2
r

⌋
, if e ∈ E(G) \M(G),

np− p−1
2 − (r − 1)

⌊
np−p−1

2
r

⌋
, if e ∈M(G).

(2)

As

max{ϕ(vixi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p} = np, (3)

max{ϕ(e) : e ∈ E(G)} ≤
⌈
np−p−1

2
r

⌉
< np, (4)

we get that ϕ is an np-labeling.
Now, we check the vertex weights. First, we evaluate the weights of the pendant vertices.

wtϕ(xi,j) = ϕ(vixi,j) =

jn− n+ i, if 1 ≤ i ≤ n and j is odd, 1 ≤ j ≤ p,

jn+ 1− i, if 1 ≤ i ≤ n and j is even, 2 ≤ j ≤ p− 1.
(5)

Hence, the set of the corresponding modular weights consists of integers from 1 up to np.
Let us denote by EG(vi) the set of all edges of the graph G incident with vertex vi, i = 1, 2, . . . , n. Then the weight of the

vertex vi is

wtϕ(vi) =
∑

e∈EG(vi)

ϕ(e) +

p∑
j=1

ϕ(vixi,j). (6)

If ei is the edge from EG(vi) belonging to M(G), then

∑
e∈EG(vi)

ϕ(e) =
∑

e∈EG(vi)
e 6=ei

ϕ(e) + ϕ(ei) = (r − 1)

⌊
np−p−1

2
r

⌋
+

(
np− p−1

2 − (r − 1)

⌊
np−p−1

2
r

⌋)
= np− p−1

2 .
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We also have
p∑
j=1

ϕ(vixi,j) =

p∑
j=1
j odd

ϕ(vixi,j) +

p−1∑
j=2
j even

ϕ(vixi,j) =

p∑
j=1
j odd

(jn− n+ i) +

p−1∑
j=2
j even

(jn+ 1− i)

=n

p∑
j=1

j + (i− n)p+1
2 + (1− i)p−1

2 = n(p−1)(p+1)
2 + p−1

2 + i.

Putting in (6), we get

wtϕ(vi) =
(
np− p−1

2

)
+
(
n(p−1)(p+1)

2 + p−1
2 + i

)
= np+ n(p−1)(p+1)

2 + i.

Moreover, since p is odd, we have

wtϕ(vi) ≡ np+ i (mod n(p+ 1)).

Hence, the set of modular weights of vertices vi, i = 1, 2, . . . , n, is

{wtϕ(vi) : i = 1, 2, . . . , n} = {0, np+ 1, np+ 2, . . . , n(p+ 1)− 1}. (7)

Combining (5) and (7), we get that the set of all modular weights is

{wtϕ(v) : v ∈ V (G�Kp)} = {0, 1, . . . , n(p+ 1)− 1}.

Thus ms(G�Kp) ≤ np.
On the other hand, the modular irregularity strength ofG�Kp is at least np because the graphG�Kp has np pendants

and each pendant must have different weight, i.e., ms(G�Kp) ≥ np. Thus, we conclude that ms(G�Kp) = np.

By Theorem 2.1, we obtain the next results.

Corollary 2.1. Let G be a bridgeless cubic graph of order n. If p is odd then

ms(G�Kp) = np.

Proof. According to Petersen’s Theorem, every cubic graph with no bridges has a perfect matching. The proof follows from
Theorem 2.1.

A sun graph Cn �K1 is defined as the graph obtained from a cycle Cn by adding a pendant edge to every vertex in the
cycle. When n is odd then the order of the sun graph Cn�K1 is congruent to 2 modulo 4 and thus by Theorem 1.2 we have
ms(Cn �K1) =∞. For n even we get the following for the disjoint union of m sun graphs.

Corollary 2.2. Let ∪mj=1(Cnj
�K1) be a disjoint union of m sun graphs Cnj

�K1, each having even order nj . Then for every
positive integer m the following holds:

ms

 m⋃
j=1

(Cnj
�K1)

 =

m∑
j=1

nj .

Proof. The proof is an immediate consequence of Theorem 2.1 because when nj is even for every j, the cycle Cnj
contains

a perfect matching.

It is possible to prove a more general result.

Corollary 2.3. Let G be a bipartite k-regular graph of order n. If p is odd then

ms(G�Kp) = np.

Proof. Let G be a bipartite k-regular graph of order n. Note that G does not need to be connected. As G is bipartite, it
contains only even cycles and thus it has a 1-factor. The result follows from Theorem 2.1.

In [8], the modular irregularity strength for Cn �Kp is already calculated.

Theorem 2.2. [8] For n ≥ 3 and p ≥ 1, let Cn �Kp be a corona product of Cn and Kp of order n(p+ 1) where n(p+ 1) 6≡ 2

(mod 4). Then ms
(
Cn �Kp

)
= np.
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Observe that in Theorem 2.2, there is no requirement for p to be odd or even. The only condition is for the order of
the graph, that is n(p+ 1) 6≡ 2 (mod 4) because in this case by Theorem 1.2, the graph has no modular irregular labeling.
Theorem 2.1 is a generalization of this result for the case when p is odd.

Let n,m, and a1, a2, . . . , am be positive integers, 1 ≤ a1 < a2 < · · · < am ≤
⌊
n
2

⌋
. An undirected graph with the set of

vertices V = {vi : 1 ≤ i ≤ n} and the set of edges E = {vivi+ak : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, the indices being taken modulo n, is
called a circulant graph and it is denoted by Cn(a1, a2, . . . , am).

Theorem 2.3. Let Cn(1, a2, . . . , am) be a circulant graph of even order n, n ≥ 4, and let p be a positive integer. If n(p+1) 6≡ 2

(mod 4), then
ms
(
Cn(1, a2, . . . , am)�Kp

)
= np.

Proof. Let
V (Cn(1, a2, . . . , am)�Kp) = {vi, xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p}

E(Cn(1, a2, . . . , am)�Kp) = {vivi+ak(mod n), vixi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ m}
(8)

be the vertex set and edge set of Cn(1, a2, . . . , am)�Kp, respectively. Since n is even, the circulant graph Cn(1, a2, . . . , am)

is a regular graph containing a 1-factor. When p is odd, the result follows from Theorem 2.1.
Now, consider the case when p is even. Note that in this case, n must be divisible by 4. Define an edge labeling ψ in the

following way

ψ(vixi,j) =

jn− n+ i, if 1 ≤ i ≤ n and j is odd, 1 ≤ j ≤ p− 1,

jn+ 1− i, if 1 ≤ i ≤ n and j is even, 2 ≤ j ≤ p,

ψ(vivi+ak) = 1, if 1 ≤ i ≤ n, 2 ≤ k ≤ m,

ψ(vivi+1) =



(3n−1)p
4 −m+ 1 + 2

⌊
i
2

⌋
, if 1 ≤ i ≤ n

2 , p ≡ 0 (mod 4) and am < n
2 ,

(3n−1)p+2
4 −m+ i, if 1 ≤ i ≤ n

2 , p ≡ 2 (mod 4) and am < n
2 ,

(3n−1)p
4 −m+ 1 + i, if 1 ≤ i ≤ n

2 , p ≡ 0 (mod 4) and am = n
2 ,

(3n−1)p−2
4 −m+ 2 + 2

⌊
i
2

⌋
, if 1 ≤ i ≤ n

2 , p ≡ 2 (mod 4) and am = n
2 ,

(3n−1)p
4 + n−m+ 2− i, if n2 < i ≤ n, p ≡ 0 (mod 4) and am < n

2 ,

(3n−1)p+2
4 −m+ 1 + 2

⌊
n+1−i

2

⌋
, if n2 < i ≤ n, p ≡ 2 (mod 4) and am < n

2 ,

(3n−1)p
4 −m+ 2 + 2

⌊
n+1−i

2

⌋
, if n2 < i ≤ n, p ≡ 0 (mod 4) and am = n

2 ,

(3n−1)p+2
4 + n−m+ 2− i, if n2 < i ≤ n, p ≡ 2 (mod 4) and am = n

2 .

It is easy to verify that ψ is an np-labeling. Furthermore, we get that the weights of vertices xi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ p consist
of consecutive integers from 1 to np, and the weights of vertices vi, 1 ≤ i ≤ n, form the set {np + 1, np + 2, . . . , n(p + 1)}.
Hence, we get that the set of all modular weights is

{wtψ(v) : v ∈ Cn(1, a2, . . . , am)�Kp} = {0, 1, . . . , n(p+ 1)− 1}.

Thus, ms(Cn(1, a2, . . . , am)�Kp) ≤ np.
Since Cn(1, a2, . . . , am)�Kp has np pendants and each pendant must have different weight, we get

ms(Cn(1, a2, . . . , am)�Kp) = np,

as required.

3. Corona product of a graph and a path on three vertices

In this section, we deal with the modular irregularity strength of the corona product of graphs G and P3.

Theorem 3.1. Let G be a regular graph of order n containing a 1-factor. Then

ms(G� P3) = n+ 1. (9)
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Proof. Let G be an r-regular graph of order n containing a 1-factor M(G). Let vi, i = 1, 2, . . . , n be vertices of a graph G

and let xi,j , i = 1, 2, . . . , n, j = 1, 2, 3 be vertices of P3 that are adjacent to vi.
Define an edge labeling φ of G� P3 by

φ(xi,jxi,j+1) =

i, if j = 1 and 1 ≤ i ≤ n,

n, if j = 1 and 1 ≤ i ≤ n,

φ(vixi,j) =


1, if j = 1 and 1 ≤ i ≤ n,

n+ 1, if j = 2 and 1 ≤ i ≤ n,

n+ 2− i, if j = 3 and 1 ≤ i ≤ n,

φ(e) =


⌊

2n−2
r

⌋
, if e ∈ E(G) \M(G),

2n− 2− (r − 1)
⌊

2n−2
r

⌋
, if e ∈M(G).

As

max{φ(xi,jxi,j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} = n,

max{φ(vixi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} = n+ 1,

max{φ(e) : e ∈ E(G)} ≤
⌈

2n−2
r

⌉
< n+ 1,

we get that φ is an (n+ 1)-labeling.
Now, we check the vertex weights. First, we evaluate the weights of the vertices of P3.

wtφ(xi,1) = φ(xi,1xi,2) + φ(vixi,1) = i+ 1,

wtφ(xi,2) = φ(xi,1xi,2) + φ(xi,2xi,3) + φ(vixi,2) = 2n+ 1 + i,

wtφ(xi,3) = φ(xi,2xi,3) + φ(vixi,3) = 2n+ 2− i.

Hence, the set of the corresponding modular weights consists of integers from 2 up to 3n+ 1.
Let us denote by EG(vi) the set of all edges of the graph G incident with vertex vi, i = 1, 2, . . . , n. Then the weight of the

vertex vi is

wtφ(vi) =
∑

e∈EG(vi)

φ(e) +

3∑
j=1

φ(vixi,j). (10)

If ei is the edge from EG(vi) belonging to M(G) then∑
e∈EG(vi)

φ(e) =
∑

e∈EG(vi)
e 6=ei

φ(e) + φ(ei) = (r − 1)
⌊

2n−2
r

⌋
+
(
2n− 2− (r − 1)

⌊
2n−2
r

⌋)
= 2n− 2.

We also have
3∑
j=1

ϕ(vixi,j) = φ(vixi,1) + φ(vixi,2) + φ(vixi,3) = 1 + (n+ 1) + (n+ 2− i) = 2n+ 4− i.

Thus, putting in (10), we get

wtϕ(vi) = 2n− 2 + 2n+ 4− i = 4n+ 2− i.

Hence, the set of modular weights of vertices vi, i = 1, 2, . . . , n is

{wtφ(vi) : i = 1, 2, . . . , n} = {0, 1, 3n+ 2, 3n+ 3, . . . , 4n− 1}.

Consequently, we get that the set of all modular weights is

{wtφ(v) : v ∈ V (G� P3)} = {0, 1, 2, . . . , 4n− 1}.

This implies that ms(G� P3) ≤ n+ 1.
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By using Theorems 1.1 and 1.3, we obtain

ms(G� P3) ≥ s(G� P3) ≥ max
{

2n−1
2 + 1, n−1

3 + 1, n−1
r+3 + 1

}
= 2n−1

2 + 1 = n+ 1
2 . (11)

Since s(G) must be an integer, we obtain
s(G) ≥ n+ 1. (12)

Thus, ms(G� P3) ≥ n+ 1. Finally, we conclude that ms(G� P3) = n+ 1.

4. Conclusion

In this paper, we evaluated the exact values of the modular irregularity strength of G�Kp for p odd and of G� P3, in the
case when G is a regular graph containing a 1-factor. We proved that ms(G�Kp) = np and ms(G�P3) = n+ 1. According
to previous research, it is possible to get a similar result for a regular graph G containing a 1-factor also in the case when
p is even; namely, when G is a cycle or a circulant graph. Thus, we conclude our paper with the following open problems:

Problem 4.1. Find regular graphs G of order n for which ms(G�Kp) = np when p is even.

Problem 4.2. For a regular graph G, determine the modular irregularity strength of G� Pm when m = 2 or m > 3.

Problem 4.3. For any two graphs G and H, determine the modular irregularity strength of G�H.
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