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Abstract
In this paper, we enumerate classes of partitions of [n] = {1, . . . , n} in which the singleton blocks are colored using a
variable or fixed number of colors. We consider, more generally, the distribution of the statistic recording the number of
colored singletons on r-partitions of [r+n] in which only singletons from [r+1, r+n] may be colored. Among our results, it
is shown by algebraic and bijective arguments that the number of partitions of [n] in which a singleton block {x} can come
in one of x colors for each x is given by the n-th row sum of Lah numbers, yielding a new combinatorial interpretation for
this sequence. Also, we show that the partitions of [n] in which each singleton is assigned one of s+1 colors where s is fixed
are equinumerous with the set of s-partitions of [s+n]. Generalizations in terms of r-partitions of both of these results and
others are demonstrated.
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1. Introduction

By a partition of the set [n] = {1, . . . , n}, we mean a collection of nonempty disjoint subsets, called blocks, whose union is
[n]. Let Pn denote the set of all partitions of [n]. In this paper, we will deal with the enumeration of certain classes of Pn
wherein the singleton blocks are colored using either a fixed or a variable number of colors. There has been recent interest
in enumerative combinatorics concerning statistics related to singleton blocks and counting classes of partitions of [n]

(and other analogous structures) satisfying certain restrictions with regard to their singletons (see, e.g., [3,4,13,14,20,21]
and references contained therein). For example, in [8, 10, 12], various classes of partitions are studied which contain no
singletons. Perhaps some of the interest in the singletons statistic stems from the fact that its distribution on Pn is the
same as that of the parameter tracking the number of circular successions (i.e., occurrences of i and i+ 1 in the same block
of a partition, where n and 1 are regarded as consecutive, see, e.g., [7]). A combinatorial proof of this fact which makes
use of an algorithmic bijection that switches singletons for block adjacencies and vice versa is given in [3]. See [6] for other
related statistics on set partitions.

By an r-partition of the set [r + n], we mean one in which the elements of [r] belong to distinct blocks. Let P(r)
n denote

the set of all r-partitions of [r + n]. If the order matters in which the elements within each block in a member of P(r)
n are

written (with the order of the blocks themselves being immaterial), one obtains what is known as an r-Lah distribution.
Let L(r)

n denote the set of all r-Lah distributions of [r+n]. By a special block within a member of P(r)
n or L(r)

n , we mean one
which contains an element of [r], with all other blocks being non-special. The same terminology will be applied at times to
distinguish the elements themselves of [r] from those in I = [r + 1, r + n].

Let L(r)
n,k for 0 ≤ k ≤ n denote the subset of L(r)

n whose members contain exactly k non-special blocks (and hence r + k

blocks altogether). Then the cardinality of L(r)
n,k is given by the r-Lah number (see, e.g., [15,17]), which we will denote here

by L(r)
n,k and is given explicitly by n!

k!

(
n+2r−1
k+2r−1

)
for all non-negative n, k and r. Let L(r)

n =
∑n
k=0 L

(r)
n,k (see [16]), which gives the

cardinality of all members of L(r)
n = ∪nk=0L

(r)
n,k. Note that when r = 0, the L(r)

n,k reduce to the classical Lah numbers Ln,k
(see, e.g., [5] and entry A008297 in the OEIS [19]). The L(r)

n reduce when r = 0 to the n-th row sum of Lah numbers given
by

Ln =

n∑
k=0

n!

k!

(
n− 1

k − 1

)
for n ≥ 0, see A000262 in [19].
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Recall that the partial r-Bell polynomials (see, e.g., [11,18]), which are denoted by B(r)
n,k(xi; yi) where xi and yi for i ≥ 1

are series of variables, are given explicitly by

B
(r)
n,k(xi; yi) =

∑
Λ(n,k,r)

[
n!

k1!k2! · · ·

(x1

1!

)k1 (x2

2!

)k2
· · ·
] [

r!

r0!r1! · · ·

(y1

0!

)r0 (y2

1!

)r1
· · ·
]
, (1)

where Λ(n, k, r) is the set of all non-negative integer sequences (ki)i≥1 and (ri)i≥0 such that
∑
i≥1 ki = k,

∑
i≥0 ri = r and∑

i≥1 i(ki+ri) = n. Note thatB(0)
n,k(xi; yi) = Bn,k(xi) corresponds to the classical partial Bell polynomial [1]. TheB(r)

n,k(xi; yi)

have exponential generating function (egf) given by

∑
n≥k

B
(r)
n,k(xi; yi)

tn

n!
=

1

k!

∑
j≥1

xj
tj

j!

k∑
j≥0

yj+1
tj

j!

r

, (2)

see [11, Corollary 4], which reduces to the well-known egf formula for Bn,k(xi) when r = 0. In what follows, we will make
use of several particular cases of (2) in establishing our results. For example, the sequence of r-Lah numbers L(r)

n,k coincides
with the special case of B(r)

n,k(xi; yi) where xi = yi = i! for all i. Hence, one has the egf formulas

∑
n≥k

L
(r)
n,k

xn

n!
=

xk

k!(1− x)k+2r
and

∑
n≥0

L(r)
n

xn

n!
=

exp
(

x
1−x

)
(1− x)2r

,

where the latter follows from the former by summing over all k ≥ 0.
In the next section, we introduce colored r-partitions of [r+n] where non-special singletons {x} come in one of x colors.

We show that the number of such partitions is given by L(r)
n , supplying both algebraic and combinatorial proofs. Thus, one

gets a new combinatorial interpretation of this sequence and connection between r-partitions and r-Lah distributions. In
the case when r = 0, one has a new interpretation of the sequence A000262 for the row sum of classical Lah numbers.
We compute, more generally, the distribution of the statistic tracking the number of non-special singletons (marked by y)
and show that it corresponds to a natural statistic on L(r)

n . This equivalence is instrumental in explaining bijectively the
y = −1 case of the distribution polynomial representing the sign balance of the singletons statistic.

A similar treatment is provided in the third section where non-special singletons in members of P(r)
n are assigned one

of a fixed number of colors. Among our results, we show that the r-partitions of [r + n] in which non-special singletons
come in one of s+ 1 colors are equinumerous with the set of (r + s)-partitions of [r + s+ n].

2. Singletons with a variable number of colors

In this section, we consider colorings of set partitions in which a singleton {x} receives one of x possible colors. Before
enumerating such partitions, recall that the (signless) r-Stirling number of the first kind (see, e.g., [2,15]) is defined by the
recurrence c(r)n+1,k = c

(r)
n,k−1 +(r+n)c

(r)
n,k, n ≥ 0 and 1 ≤ k ≤ n+1, together with the initial values c(r)n,0 = r(r+1) · · · (r+n−1)

and c(r)0,k = δ0,k. Taking xi = yi = (i− 1)! in (2) gives the egf formula∑
n≥0

c
(r)
n,k

xn

n!
=

(− ln(1− x))k

k!(1− x)r
. (3)

Given n numbers i1, . . . , in and 1 ≤ j ≤ n, define the j-th symmetric sum Sj(i1, . . . , in) by

Sj(i1, . . . , in) =
∑

1≤r1<···<rj≤n

ir1 · · · irj ,

with S0(i1, . . . , in) = 1. We have
c
(r+1)
n,j = Sn−j(r + 1, . . . , r + n), 0 ≤ j ≤ n. (4)

To realize (4), we proceed inductively on n, noting that the equality holds if j = 0 or j = n. If n ≥ 2 and 1 ≤ j ≤ n− 1, then

c
(r+1)
n,j = c

(r+1)
n−1,j−1 + (r + n)c

(r+1)
n−1,j = Sn−j(r + 1, . . . , r + n− 1) + (r + n)Sn−j−1(r + 1, . . . , r + n− 1) = Sn−j(r + 1, . . . , r + n),

which completes the induction and establishes (4).
Let v(r)

n,k denote the number of r-partitions of [r + n] into r + k blocks in which no singleton of the form {z}, where z ∈ I
occurs. Define v(r)

n =
∑n
k=0 v

(r)
n,k for n ≥ 0. Taking xi = 1 if i ≥ 2, with x1 = 0, and yi = 1 for all i ≥ 1 in (2), and then

summing over all k ≥ 0, implies that the egf for v(r)
n is given by∑

n≥0

v(r)
n

xn

n!
= exp (ex + (r − 1)x− 1) . (5)
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Let K(r)
n denote the set of r-partitions of [r + n] in which a singleton {x} where x ∈ I comes in one of x colors. Given

π ∈ K(r)
n , let µ(π) denote the number of singletons in I. Define the distribution K

(r)
n (y) =

∑
π∈K(r)

n
yµ(π) for n ≥ 1, with

K
(r)
0 := 1, for all r ≥ 0.

Lemma 2.1. If n ≥ 0, then

K(r)
n (y) =

n∑
j=0

v
(r)
j c

(r+1)
n,j yn−j . (6)

Proof. Suppose that a member of K(r)
n contains exactly j singleton blocks in I. Then there are Sj{r + 1, . . . , r + n}yj

possibilities for the (weighted) choice of these singletons, along with their colors. The remaining n − j members of I are
then arranged together with the members of [r] according to an r-partition in v(r)

n−j ways. Considering all possible 0 ≤ j ≤ n
gives

K(r)
n (y) =

n∑
j=0

v
(r)
n−jSj{r + 1, . . . , r + n}yj =

n∑
j=0

v
(r)
n−jc

(r+1)
n,n−jy

j ,

by (4), and formula (6) now follows by replacing j with n− j.

Define the egf for the sequence K(r)
n (y) for n ≥ 0 and a fixed r by

G(r)(x, y) =
∑
n≥0

K(r)
n (y)

xn

n!
.

Theorem 2.1. We have
G(r)(x, y) =

exp
(
(1− xy)−1/y − 1

)
(1− xy)(r−1)/y+r+1

. (7)

Proof. By (6), (3) and (5), we have

∑
n≥0

K(r)
n (y)

xn

n!
=
∑
n≥0

xn

n!

n∑
j=0

v
(r)
j c

(r+1)
n,j yn−j =

∑
j≥0

v
(r)
j y−j

∑
n≥j

c
(r+1)
n,j

(xy)n

n!

=
∑
j≥0

v
(r)
j y−j

(− ln(1− xy))j

j!(1− xy)r+1
=

1

(1− xy)r+1

∑
j≥0

v
(r)
j

(
− ln(1−xy)

y

)j
j!

=
1

(1− xy)r+1
exp

(
−(r − 1)y−1 ln(1− xy)

)
exp

(
exp

(
−y−1 ln(1− xy)

)
− 1
)

=
(1− xy)(1−r)/y

(1− xy)r+1
exp

((
1

1− xy

)1/y

− 1

)
=

exp
(
(1− xy)−1/y − 1

)
(1− xy)(r−1)/y+r+1

.

Remark 2.1. The distribution of the colored singletons statistic on members of K(r)
n having a fixed number k of non-special

blocks is seen to be given by
n∑

j=n−k

v
(r)
j,k+j−nc

(r+1)
n,j yn−j .

However, the egf over n ≥ k for a fixed k does not seem to have a simple formula since one cannot separate the v(r)
j,k+j−n and

c
(r+1)
n,j terms when sums are interchanged (as happens with v

(r)
j and c

(r+1)
n,j in the preceding proof). In the case of a fixed

number of colors, it is possible to compute the analogous egf formula (see Lemma 3.1 below).

Taking y = 1 in the preceding result, and recalling
∑
n≥0 L

(r)
n

xn

n! = 1
(1−x)2r exp

(
x

1−x

)
, yields the following connection

between colored set partitions and Lah distributions.

Corollary 2.1. If n, r ≥ 0, then |K(r)
n | = L

(r)
n . In particular, the number of partitions of [n] in which a singleton {x} is colored

in one of x ways for each x ∈ [n] is given by Ln.

Let E(r)
n and O(r)

n denote the subsets of K(r)
n whose members contain an even or an odd number of singletons in I,

respectively. Substituting y = −1 in Theorem 2.1 gives G(r)(x,−1) = ex

(1+x)2 , and extracting the coefficient of xn/n! yields
the following sign-balance result.

Corollary 2.2. If n, r ≥ 0, then |E(r)
n | − |O(r)

n | =
∑n
m=0(−1)m

(
n
m

)
(m+ 1)!.
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Let Hn =
∑n
i=1

1
i denote the n-th harmonic number for n ≥ 1. We have the following explicit formula for the total

number of singletons in I among all members of K(r)
n .

Theorem 2.2. If n ≥ 1 and r ≥ 0, then the total number of colored singletons in all r-partitions of [r+n] in which a singleton
{x} where x ∈ [r + 1, r + n] is colored in one of x ways is given by

n(2r + 1)L
(r+1)
n−1 − rnL

(r)
n−1 − 2rn(n− 1)L

(r+1)
n−2 −

n∑
m=2

(
n

m

)
m!
(
Hm−1 +

r

m

)
L

(r)
n−m.

Proof. Differentiating formula (7) with respect to y gives
∂G(r)(x, y)

∂y
= exp

(
(1− xy)−1/y − 1

)( 1

(1− xy)r/y+r+1

(
x

y(1− xy)
+

ln(1− xy)

y2

)
+

(r − 1) ln(1− xy)

y2(1− xy)(r−1)/y+r+1

+
x(r − 1 + (r + 1)y)

y(1− xy)(r−1)/y+r+2

)
,

and hence
∂G(r)(x, y)

∂y
|y=1 = exp

(
x

1− x

)(
1

(1− x)2r+1

(
x

1− x
+ ln(1− x)

)
+

(r − 1) ln(1− x)

(1− x)2r
+

2rx

(1− x)2r+1

)

=
exp

(
x

1−x

)
(1− x)2r+2

(
(2r + 1)x− 2rx2 + (1− x)(r − (r − 1)x) ln(1− x)

)
=

exp
(

x
1−x

)
(1− x)2r+2

(
(2r + 1)x− 2rx2

)
−

exp
(

x
1−x

)
(1− x)2r

·
(
− ln(1− x)

1− x

)
· (r − (r − 1)x) .

Extracting the coefficient of xn

n! for n ≥ 2, and recalling
∑
n≥1Hnx

n = − ln(1−x)
1−x , gives

[xn/n!]

(
∂G(r)(x, y)

∂y
|y=1

)
= n(2r + 1)L

(r+1)
n−1 − 2rn(n− 1)L

(r+1)
n−2 − n!r

n∑
m=1

Hm
L

(r)
n−m

(n−m)!

+ n!(r − 1)

n−1∑
m=1

Hm

L
(r)
n−m−1

(n−m− 1)!

= n(2r + 1)L
(r+1)
n−1 − 2rn(n− 1)L

(r+1)
n−2 − r

n∑
m=1

(
n

m

)
m!HmL

(r)
n−m

+ (r − 1)

n−1∑
m=1

(
n

m+ 1

)
(m+ 1)!HmL

(r)
n−m−1.

The two sums in the preceding expression may be combined to give

− r
n∑

m=1

(
n

m

)
m!HmL

(r)
n−m + (r − 1)

n∑
m=2

(
n

m

)
m!Hm−1L

(r)
n−m

= −rnL(r)
n−1 − r

n∑
m=2

(
n

m

)
m! · 1

m
L

(r)
n−m −

n∑
m=2

(
n

m

)
m!Hm−1L

(r)
n−m

= −rnL(r)
n−1 −

n∑
m=2

(
n

m

)
m!
(
Hm−1 +

r

m

)
L

(r)
n−m,

which implies the desired formula.

From formula (6), it is seen that the total number of singletons in all the members ofK(r)
n is also given by the summation∑n

j=0(n − j)v(r)
j c

(r+1)
n,j . Equating this with the prior result gives the following apparently new identity relating r-Stirling,

r-Lah and harmonic numbers.

Corollary 2.3. If n ≥ 1 and r ≥ 0, then
n∑
j=0

(n− j)v(r)
j c

(r+1)
n,j = n(2r + 1)L

(r+1)
n−1 − rnL

(r)
n−1 − 2rn(n− 1)L

(r+1)
n−2 −

n∑
m=2

(
n

m

)
m!
(
Hm−1 +

r

m

)
L

(r)
n−m. (8)

Let tn denote the total number of non-special singletons in all the members of K(r)
n for a fixed n ≥ 1 and r ≥ 0 variable.

It is seen that tn is a polynomial in r of degree n. The first several tn are given in Table 1. Note that taking r = 0 in tn

yields the total number of singletons in all the members of Pn wherein each singleton {x} receives one of x colors.
We now provide combinatorial explanations of the formulas found above for the cardinality of K(r)

n and for the sign
balance of the colored singletons statistic on K(r)

n .
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n tn

1 r + 1
2 4r2 + 9r + 4
3 12r3 + 48r2 + 58r + 24
4 32r4 + 200r3 + 444r2 + 444r + 176
5 80r5 + 720r4 + 2500r3 + 4360r2 + 3941r + 1505
6 192r6 + 2352r5 + 11680r4 + 30900r3 + 47000r2 + 39665r + 14652
7 448r7 + 7168r6 + 48048r5 + 178080r4 + 400876r3 + 556332r2 + 445558r + 159768

Table 1: The polynomials tn for 1 ≤ n ≤ 7.

Combinatorial proof of Corollary 2.1

We shall represent the element x in a colored singleton within a member of K(r)
n by xy, where y ∈ [x] denotes the color

assigned to x. By a block right-left minimum within π ∈ L(r)
n , we mean an element z in some block B of π in which all

elements occurring to the right of z within B are greater than z. That is, if the (ordered) contents of B is given by the
sequence i1 · · · ip, then the letter ia corresponds to a block right-left minimum (rl min) if and only if ij > ia for all a < j ≤ p.

We first define a mapping from K(r)
n to L(r)

n as follows. Given π ∈ K(r)
n , let P denote the set of singletons xy in π such that

y ∈ [x−1] and let P ′ denote the partition of the members of [r+n]−P . If P is empty, then let f(π) = π, where we ignore the
coloring of any singletons xx in π. So assume P is nonempty with the members of P given by i1 < · · · < i` for some ` ≥ 1. Let
the singleton {it} for t ∈ [`] be assigned the color jt. We first insert i1 into the partition P ′ such that it directly precedes the
element j1, but otherwise ignore the color assigned to i1. Next, we insert i2 into the resulting (contents-ordered) partition
such that it directly precedes j2, and proceed likewise with the elements i3, . . . , i`, successively. Let f(π) denote the member
of L(r)

n that results once all the members of P have been inserted as described and the coloring of any singletons xx within
π is disregarded.

Note that the inserted members of I from P correspond precisely to the set of elements that are not rl min within f(π).
This follows from the fact that each element it is inserted directly prior to a member of [r + n] that is less than it and that
such an insertion does not affect the status of any other rl min. Thus, the mapping f may be reversed as follows. If all
the elements of σ ∈ L(r)

n are rl min (i.e., if σ corresponds to a member of P(r)
n ), then let g(σ) = σ, where any singletons {x}

within σ are assigned the color x. So assume at least one element of [r + n] within σ does not correspond to an rl min and
let a1 < · · · < a` denote the set of non rl min for some ` ≥ 1. First observe that {a1, . . . , a`} ⊆ [r+ 1, r+ n] since members of
[r] occur in different blocks of π. Further, we have that a` must be followed directly by some member of [a` − 1] within its
block. For if not, then a` not being the final element within any block implies it would be followed by some z > a`. But then
a` being the largest non rl min implies z must be an rl min. Thus, all of the elements to the right of z in its block must be
greater than z, and hence a`. This would imply a` would be an rl min, which it isn’t.

We then remove a` from its block within σ and form the singleton {a`}, which we assign the color q, where q ∈ [a` − 1]

denotes the successor of a` within its block. Note that moving a` as described does not create or destroy any rl min (in blocks
other than the new singleton {a`}), as the successor of a` in its block was smaller than a`. In the resulting partition where
a` occurs as a colored singleton, we have that a`−1 must be followed by a smaller element t in its block, upon reasoning
as before. We then move a`−1 from its block and create the singleton {a`−1}, which is assigned the color t. We proceed
likewise, successively, with a`−2, . . . , a1. After a1 has been moved and its singleton assigned some color in [a1−1], we assign
to any uncolored singletons {x} where x ∈ I occurring within the partition at this point the color x. Let g(σ) denote the
resulting member of K(r)

n .
For example, if n = 12, r = 3,

π = {1, 7, 8}, {2, 4}, {3}, {6, 10, 14}, {54}, {99}, {115}, {129}, {133}, {158} ∈ K(3)
12

and
σ = {1, 7, 15, 8}, {2, 11, 5, 4}, {13, 3}, {6, 10, 14}, {12, 9} ∈ L(3)

12 ,

then we have f(π) = σ and g(σ) = π. One can then show g(f(π)) = π for all π ∈ K(r)
n since g when applied to f(π) is seen to

restore each of the singleton blocks of π in I along with their respective colors. Likewise, f(g(σ)) = σ for all σ ∈ L(r)
n since

f when applied to g(σ) sequentially recovers the non rl min of σ in the reverse order in which they were taken away by g.
Thus, the mapping f provides a bijection between K(r)

n and L(r)
n , whence |K(r)

n | = L
(r)
n .
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Combinatorial proof of Corollary 2.2
We first show

|E(r)
n | − |O(r)

n | = (−1)n
n∑

m=0

(
n

m

)
m!dn−m, n, r ≥ 0, (9)

where dn denotes the number of derangements of [n] (i.e., permutations without fixed points), see A000166 in [19]. We
demonstrate first the r = 0 case of (9), where we may clearly assume n ≥ 2. From the combinatorial proof of Corollary
2.1 above, one has that the statistic on K(0)

n recording the number of singleton blocks has that same distribution as the
statistic on Ln = L(0)

n which records the number of elements p ∈ [n] within π ∈ Ln such that either (i) p is not a block rl min
of π or (ii) p is both the last and smallest element of some block of π. Define the sign of π by (−1)σ(π), where σ(π) denotes
the number of elements of [n] satisfying either condition (i) or (ii). It then suffices to define a sign-changing involution on
Ln off of a subset of Ln whose members have sum of signs given by the right-hand side of (9).

To do so, we first order the blocks of π ∈ Ln from left to right in increasing order of their smallest elements contained
therein. Consider a block B of π, if it exists, such that |B| ≥ 2 whose last element (when considering the sequence of
elements within B from left to right) is neither the smallest nor the second smallest element of B. Assume B is the
leftmost block of π satisfying this requirement and let a, b with a < b denote the two smallest elements of B. We then
switch the elements a and b within B, leaving all other members of B undisturbed. Let υ(π) denote the resulting member
of Ln. Note that b changes its status concerning being an rl min of π, with no other members of [n] changing in this regard.
Further, since neither a nor b is the final element of B, we have that π and υ(π) are of opposite σ-parity. Thus, υ yields a
sign-changing involution of Ln in all cases when it is defined. Note that if a were to occur at the end of B, then switching
a and b would fail to reverse the parity since a and b would both go from contributing to the σ value of π to neither doing
so, with all other elements of [n] remaining of the same status concerning their contributing to σ(π).

We now determine the sum of the signs of the members of the set T of survivors of υ, which is seen to consist of those
π in which each non-singleton block B ends either in its smallest or second smallest element. Note that all elements
in singleton blocks contribute to the value of σ(π), with the same holding for non-singletons whose smallest element is
last. If B is a non-singleton block whose second smallest letter is last, then the smallest two elements of that block do
not contribute to σ(π), with all other elements in B doing so (being non rl min). Thus, it is seen that each member of T
has sign (−1)n. To enumerate the members of T , let m denote the number of elements of [n] going in either singletons or
non-singletons whose smallest element is last. Once those members of [n] have been selected, there are m! ways in which
to arrange them (as blocks in this case may be viewed as cycles of an arbitrary permutation of size m), with dn−m ways
in which to arrange the unselected members of [n] as the remaining blocks are required to be non-singletons in which the
second smallest element is last. Considering all possible 0 ≤ m ≤ n implies that the sum of the signs of the members of T
is given by the right side of (9), which completes the proof in the r = 0 case.

We now show (9) in the case when r > 0. Recall that a special block within a member of L(r)
n is one that contains a special

element, i.e., a member of [r]. Note that from the proof of Corollary 2.1, we have that the colored singletons statistic on
K(r)
n where r > 0 corresponds to the statistic on L(r)

n recording the number of x ∈ I such that one of the following holds: (a)
x occurs as a non rl min within a non-special block, (b) x occurs as both the smallest and last element of some non-special
block, (c) x occurs as a non rl min in the sequence of elements to the right of the special element within some special block
or (d) x occurs anywhere to the left of the special element within a special block. Let δ(ρ) denote the number of elements
of I satisfying one of the conditions (a)–(d) above within ρ ∈ L(r)

n . If the sign of ρ is defined as (−1)δ(ρ) for each ρ, then by
the preceding the sum of signs of all members of L(r)

n is given by the left-hand side of (9).
We now define an involution of L(r)

n which reverses the δ-parity. If no elements of I occur in the special blocks of ρ ∈ L(r)
n ,

then we may apply the mapping υ defined above since only conditions (a) and (b) would apply. Otherwise, let s denote the
smallest member of [r] such that the s-th special block of ρ contains at least one member of I. Suppose first that at least
two members of I occur to the right of s within its block S and let u < v denote the smallest two such members. Then
switching the positions of u and v is seen to change the parity since only the element v changes in regard to its contributing
to the value of δ (as its status concerning condition (c) changes). Note here it is possible for either u or v to occur at the
very end of S since u would not be counted by δ, regardless of its position. Now suppose there is at most one element of I
occurring to the right of s within S. Let w denote the rightmost element of I occurring in S in this case. We then switch
the letters s and w and observe that this changes the status of w with regard to its satisfying (d) above. Note further that
w would not satisfy (c) when it occurs last in S since it would trivially be an rl min in this case. Therefore, each member
of L(r)

n for which at least one element of I occurs within a special block is paired with another of opposite δ-parity, which
implies formula (9) holds for all r > 0 as well.
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To complete the proof, we establish by a combinatorial argument the equality
n∑

m=0

(−1)n−m
(
n

m

)
(m+ 1)! =

n∑
m=0

(
n

m

)
m!dn−m, n ≥ 0. (10)

Consider the set An,m of ordered pairs (α, β), where α is a subset of [2, n + 1] of size n − m and β is a permutation of
{1}∪ ([2, n+1]−α), arranged according to cycles. Define the sign of a member ofAn,m by (−1)n−m and letAn = ∪nm=0An,m.
Then the left side of (10) gives the sum of the signs of all members of An. Define a sign-changing involution on An by
identifying the smallest element of [2, n + 1] either belonging to α or occurring in β as a 1-cycle and switching it to the
other option. The set of survivors of this involution consists of those ordered pairs (α, β) such that α is empty and β is a
permutation of [n+1] in which only the cycle containing 1 can have length one. Each of these (α, β) has positive sign, being
a member of A0, and they are enumerated by the right side of (10), upon considering the number m of elements of [2, n+ 1]

appearing within the cycle of β containing 1. This establishes (10) and completes the proof of Corollary 2.2.

3. Singletons with a fixed number of colors

Let P(r)
n,k for 0 ≤ k ≤ n denote the subset of P(r)

n whose members contain k non-special blocks (and hence k + r blocks
altogether). Let S(r)

n,k and B(r)
n =

∑n
k=0 S

(r)
n,k denote respectively the r-Stirling number of the second kind and r-Bell number

(see, for example, [2] and [9]). Recall that the cardinalities of the sets P(r)
n,k and P(r)

n are given by S(r)
n,k and B(r)

n , respectively.
Consider coloring singleton blocks of an r-partition using a fixed number of colors as follows. Given a positive integer

s, let P(r,s)
n,k denote colored members of P(r)

n,k wherein each non-special singleton block (i.e., {x} for x ∈ I) receives one of s
colors, and let P(r,s)

n = ∪nk=0P
(r,s)
n,k . Let S(r,s)

n,k = |P(r,s)
n,k | and B(r,s)

n = |P(r,s)
n |.

Lemma 3.1. For each k ≥ 0, we have ∑
k≥0

S
(r,s)
n,k

xn

n!
=
erx

k!
(ex + (s− 1)x− 1)

k
. (11)

Proof. Considering the number j of non-special singletons within a member of P(r,s)
n,k implies

S
(r,s)
n,k =

k∑
j=0

(
n

j

)
v

(r)
n−j,k−js

j , n ≥ k ≥ 0.

Computing the egf for a fixed k ≥ 0 then gives

∑
n≥k

S
(r,s)
n,k

xn

n!
=
∑
n≥k

xn

n!

k∑
j=0

(
n

j

)
v

(r)
n−j,k−js

j =

k∑
j=0

(sx)j

j!

∑
n≥k−j

v
(r)
n,k−j

xn

n!
=

k∑
j=0

(sx)j

j!
· erx

(k − j)!
(ex − x− 1)k−j

=
erx

k!

k∑
j=0

(
k

j

)
(sx)j(ex − x− 1)k−j =

erx

k!
(ex + (s− 1)x− 1)k,

where we have made use of the particular case of (2) where xi = yi = 1 for all i > 1, with x1 = 0, y1 = 1.

Summing the formula in Lemma 3.1 over all k ≥ 0, and using the fact B(r,s)
n =

∑n
k=0 S

(r,s)
n,k , yields the following result.

Theorem 3.1. We have
∑
n≥0B

(r,s)
n

xn

n! = exp (ex + (r + s− 1)x− 1) and hence B(r,s+1)
n = B

(r+s)
n for all n, r and s. In

particular, the number of partitions of [n] in which each singleton is colored in one of s + 1 ways equals the number of
s-partitions of [s+ n].

The equality B
(r,s+1)
n = B

(r+s)
n may be explained directly as follows. Let π ∈ P(r,s+1)

n and denote the colors used on
non-special singletons of π by elements in [s + 1]. First consider the singletons of π assigned a color in [s]. We append s

special blocks to π, each to contain a different element of [r + 1, r + s], and add s to all elements of I within π. Then add
all non-special singletons of π which are assigned the color i to the special block containing r + i for each i ∈ [s]. We leave
any remaining colored singletons unchanged, which have been assigned the color s+ 1. Finally, remove the color from all
colored elements and the resulting partition is seen to belong P(r+s)

n . Since the procedure just described is reversible, the
equality in question is established.

Let H(r)(x, s) denote the egf formula for B(r,s)
n given in Theorem 3.1. Then ∂

∂yH
(r)(x, sy) |y=1= sxH(r)(x, s), and extract-

ing the coefficient of xn

n! gives nsB(r+s−1)
n−1 . Thus, the total number of colored singletons within the members of P(r,s)

n is given
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by nsB(r+s−1)
n−1 for each n ≥ 1, which may be realized directly. On the other hand, from the proof of Lemma 3.1, this number

is also given by
n∑
k=0

k∑
j=0

j

(
n

j

)
v

(r)
n−j,k−js

j =

n∑
j=1

j

(
n

j

)
v

(r)
n−js

j = n

n−1∑
j=0

(
n− 1

j

)
v

(r)
n−j−1s

j+1.

Equating the two formulas for the total, and replacing n with n+ 1, gives the following identity.

Corollary 3.1. If n, r ≥ 0 and s ≥ 1, then

B(r+s−1)
n =

n∑
j=0

(
n

j

)
v

(r)
n−js

j . (12)

A combinatorial argument similar to that given above for Theorem 3.1 may be provided for Corollary 3.1. Let E(r,s)
n

and O(r,s)
n denote the subsets of P(r,s)

n whose members contain an even or an odd number of non-special singleton blocks,
respectively. Define the r-Bell number B(r)

n for an arbitrary real number r as the coefficient of xn

n! in exp (ex + rx− 1).
Substituting −s for s in the formula for H(r)(x, s) and extracting coefficients yields the following sign balance result.

Corollary 3.2. If n, r ≥ 0 and s ≥ 1, then |E(r,s)
n | − |O(r,s)

n | = B
(r−s−1)
n .

Combinatorial proof of Corollary 3.2
Since both sides of the equality are seen to be polynomials in r for a fixed n and s, it suffices to establish the result in
the case when r ≥ s + 1. By the bijection used in the combinatorial explanation of Theorem 3.1 above, the left-hand
side of the equality is equal to the sign balance of the statistic µ on P(r+s−1)

n which records the number of elements of
J = [r + s, r + s + n − 1] either going in one of the final s − 1 special blocks or occurring as a singleton. Let π ∈ P(r+s−1)

n ,
where r ≥ s+ 1. Suppose first that there exists at least one member of J in one of the final 2s− 2 special blocks of π, which
we label as B1, . . . , B2s−2 so that block Bi contains the special element r − s + i + 1 for 1 ≤ i ≤ 2s − 2. Suppose j0 is the
smallest index j ∈ [s− 1] such that Bj ∪Bj+s−1 contains at least one member of J . Let ` denote the smallest member of J
in Bj0 ∪Bj0+s−1 and move ` either from Bj0 to Bj0+s−1 or vice versa.

Otherwise, suppose none of the blocks B1, . . . , B2s−2 contain a member of J . In this case, let m denote the smallest
member of J , if it exists, that either occurs as a singleton or lies in the special block of π containing r − s + 1. We switch
options concerning the position of m within π. One may verify that this operation, taken together with the preceding one,
defines a sign-changing involution on P(r+s−1)

n . The set of survivors of this involution consists of those λ ∈ P(r+s−1)
n in

which no element of J occurs as a singleton block or lies in the final 2s− 1 special blocks of λ. Such λ are synonymous with
the members of P(r−s)

n containing no non-special singletons. Upon taking any non-special elements lying in the (r − s)-th
special block and forming a singleton block for each one, deleting r − s and subtracting 1 from each non-special element,
we have that the set of survivors λ are synonymous with the members P(r−s−1)

n . Since each λ has positive sign, the sign
balance of the statistic µ on P(r+s−1)

n is given by B(r−s−1)
n , which completes the proof.
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[9] I. Mezö, The r-Bell numbers, J. Integer Seq. 14 (2011) #11.1.1.
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